

Project 3: Feedback Temperature Control

Nicholas McLaughlin

MECH.5410 – Advanced Heat Transfer

Professor Juan Pablo Trelles

November 10th, 2020

1

Table of Contents

Variables Used .. 2

1 – Thermal Model.. 3

1.1 – Schematic Model ... 3

1.2 – Background Theory ... 3

1.3 – Discretizing the Domain .. 3

1.4 – Converting between Cartesian Coordinates and Indices ... 4

1.5 – State-Space Formulation .. 4

1.6 – The Input Matrix .. 5

1.7 – The Output Matrix ... 6

2 – Numerical Solution ... 6

2.1 – Temperature Distribution as a Function of Thermocouple Position 6

2.2 – Mean deviation Calculator for a Given Thermocouple Position 6

2.3 – Discrete Optimization for Mean Deviation Calculator .. 7

2.4 – Data Analysis ... 8

3 – Model Verification .. 9

4 – Device Performance .. 10

4.1 – Boundary Plots ... 10

4.2 – Optimization Results .. 11

4.3 – Further Optimization and Considerations .. 13

Appendix ... 17

A.1 – Characteristic Plots for All kg Values Sampled .. 17

A.1.1 – kg = 1.4  104.. 17

A.1.2 – kg = 1.4  104.. 18

A.1.3 – kg = 1.8  104.. 19

A.1.4 – kg = 2.0  104.. 20

A.1.5 – kg = 2.2  104.. 21

A.2 – Temperature Distribution as a Function of Thermocouple Position 22

A.3 – Mean Deviation Calculator for a Given Thermocouple Position 30

A.4 – Discrete Optimization for Mean deviation Calculator .. 37

A.5 – Data Analysis .. 42

2

Variables Used
Below is a complete list of the variables and notations used throughout this analysis.

Variable Description Value/Equation Units

𝐿𝑥 Length of the surface along x 0.020 [m]

𝐿𝑦 Length of the surface along y 0.010 [m]

𝑅 Radius of the circular quadrant heating element 0.005 [m]

𝑡𝑓𝑖𝑛𝑎𝑙 Final time to be considered 100 [s]

𝜌𝐶𝑝 Volumetric heat capacity 2000 [J/m3/K]

𝑘 Thermal conductivity 1.0 [W/m2/K]

𝑇∞ Ambient temperature

10 + 10 sin (
9𝜋𝑡

𝑡𝑓𝑖𝑛𝑎𝑙
)

+ 7 sin (
22𝜋𝑡

𝑡𝑓𝑖𝑛𝑎𝑙
)

+ 5 sin (
7𝜋𝑡

𝑡𝑓𝑖𝑛𝑎𝑙
)

[˚C]

𝑇𝑖𝑛𝑖𝑡𝑎𝑙 Initial temperature 10 [˚C]

𝑇𝑟 Reference temperature 20 [˚C]

𝑔 Heat generation Controlled

Parameter

[J/m3]

𝑇 Temperature Variable [˚C]

𝑁𝑥 Spatial nodes along x 51 []

𝑁𝑦 Spatial nodes along y 25 []

𝑁 Total number of nodes 𝑁𝑥 × 𝑁𝑦 []

𝑖 Index along y Variable []

𝑗 Index along x Variable []

𝑻 Discretized temperature vector See Equation 3 [˚C]

𝑨 System matrix See Code in

Appendix

[]

𝑩 Input matrix See Section 1.6 []

𝒖 Control vector See Equation 4.1 []

𝒚 Output vector See Equation 4.2 [˚C]

𝑪 Output matrix See Section 1.7 []

𝑲 Gain matrix See Equation 4.4 []

𝒓 Reference vector See Equation 4.3 [˚C]

𝛿𝑡 Desired time interval User defined [s]

𝑘𝑔 Heat generation gain Variable []

3

1 – Thermal Model

1.1 – Schematic Model

This analysis considers the efficacy of a surface-temperature control system for various

thermocouple configurations and gain coefficients. A schematic of this, for the general case, is

shown below in Figure 1.

Figure 1. Schematic Diagram of Surface of Interest

The control system is used to regulate the temperature at the top and right boundaries such that

there is a minimal deviation from a specified reference temperature. The control system uses a

heater in the shape of a circular quadrant (lower-left corner) to regulate the temperatures along

these boundaries.

Previously, a control system was developed to consider the system in Figure 1 when dx = dy =0,

and the right boundary is under the same conditions as the left and bottom boundaries. Therefore,

a slight modification needs to be made to the existing controls to account for variable dx and dy as

well as the convective right boundary condition.

1.2 – Background Theory

The heat transfer considerations within this analysis are based on the “linear constant-properties

heat conduction equation” as shown below in Equation 1.

 𝜕𝑇

𝜕𝑡
=

𝑘

𝜌𝐶𝑝
∇2𝑇 +

𝑔

𝜌𝐶𝑝
 (1)

This equation fundamentally describes the heat transfer phenomena occurring on the surface. For

1.3 – Discretizing the Domain

If the surface is to be discretized into a grid Nx by Ny, each cell can be assigned an index value.

Index i = 1 begins at the origin and increases along x until i = Nx. Then, i = Nx + 1 begins 1 row

above and continues the pattern. This continues until i = N = Nx x Ny in the top right corner.

4

An example of this indexing for Nx = 20 and Ny = 10 is provided below in Figure 2.

Figure 2. Discretized Surface for Nx = 20 and Ny = 10

1.4 – Converting between Cartesian Coordinates and Indices

Any 2D Cartesian coordinate requires a transformation into the indices used to discretize the area.

In MATLAB, this transformation is given by the following code.

Px = round(Nx*(x/Lx));

Py = round(Ny*(y/Ly));

Node = Nx * (Py - 1) + Px;

Effectively, this converts the desired position x and y into a single value where the point in the x-

y plane would approximately be on the discretized grid.

1.5 – State-Space Formulation

A general system with feedback control and a reference input can be described by the following

equations [1].

 𝑻̇ = 𝑨𝑻 + 𝑩𝒖 (2.1)

 𝒚 = 𝑪𝑻 (2.2)

 𝒖 = 𝑲(𝒓 − 𝒚) (2.3)

In these equations T is the discretized temperature vector, A is the system matrix, B is the input

matrix, u is the control vector, y the output vector, C the output matrix, K the gain matrix, and r

the reference vector [1]. The temperature at a specific time interval, t, is provided below in

Equation 3 [1].

 𝑻𝑛+1 = [𝑰 − 𝛿𝑡(𝑨 − 𝑩𝑪𝑲)]−1[𝑻𝑛 + 𝛿𝑡𝑩𝑲𝒓] (3)

The matrix k and the vectors u, y, and r used in the previous equations are further defined in

Equations 4.1-4.4.

5

 𝒖 = {
𝑔

𝑇∞
} (4.1)

𝒚 = {

𝑇𝒑

0
} (4.2)

𝒓 = {

𝑇𝒓

𝑇∞
} (4.3)

𝒌 = [

𝑘𝑔 0

0 1
] (4.4)

1.6 – The Input Matrix

The input matrix, B, depends on the geometry and boundary conditions of the surface. In general,

it is a size N2 matrix filled with zeros. Only at special locations is bij  0. These locations are

defined as follows:

𝑏𝑖1 =
1

𝜌𝐶𝑝
 when the ith node corresponds to the geometry generating heat

𝑏𝑖2 = −ℎ when the ith node corresponds to the convective boundaries

Else, 𝑏𝑖𝑗 = 0

To consider the boundaries in the index notation, the locations can be considered in the matrix

discretization first then converted into the index form. For example, the top boundary occurs in

the matrix discretization as the entire last row. Each position in the last row (i.e., Nxi = 1:Nx and

Nyi = Ny) can be converted into the index form with the MATLAB code provided in 1.3 and the

boundary conditions stored in context. An example of this for the top boundary is provided below:

i = Ny;

for j = 2 : Nx-1

 node = Nx * (i - 1) + j;

 nodeb = node - Nx;

 A(node, node) = vln * (-k / dy - h);

 A(node, nodeb) = vln * (k / dy);

 B(node, 2) = vln * (h);

end

For the entire code considering each boundary, see the Appendix.

The locations of the heat generation are a bit more involved to evaluate. The positions in the

discretized matrix need to be checked if they are within the area of the circular quadrant then they

can be stored in context. The code for this is provided below.

for i = 2 : Ny-1

 for j = 2 : Nx-1

 node = Nx * (i - 1) + j;

 if sqrt(x(j)^2 + y(i)^2) <= R

 B(node, 1) = 1.0 / rhoCp;

 end

 end

end

6

1.7 – The Output Matrix

The output matrix, C, is a size 2N matrix filled with zeros. Only when the following condition is

satisfied does cij  0

𝑐1𝑗 = 1 when the jth node corresponds to the point where the thermocouple is

Else, 𝑐𝑖𝑗 = 0

This is not trivial – this process requires the index transformation provided in 1.3 to consider the

point in context. This code is repeated below.

Pnode = Nx * (Py - 1) + Px;
Ctx.node = Pnode;
C = sparse(2, N);
C(1, Ctx.node) = 1;

2 – Numerical Solution

2.1 – Temperature Distribution as a Function of Thermocouple Position

To consider the temperature distribution resulting from the surface-temperature control system, a

code in MATLAB was developed to evaluate the linear system described in Equations 2 and 3.

This code can be found in Appendix A.2. The majority of the functional code comes from Professor

Juan Pablo Trelles’ code “heatplate_feedcontrol.m”. Professor Trelles’ code evaluates the linear

system over a prescribed time range and plots the surface temperature distribution for several

instants as well as the controls response. The thermocouple is always considered to be in the top

right corner and only the top boundary undergoes convection with the outside environment.

To restructure this code, such that it will work for various thermocouple positions and a right-side

convection condition, slight modifications to the base code was necessary. This consists of adding

the index conversion from section 1.4 and changing the right-side boundary condition to include

convection. These are relatively minor changes but drastically change the results.

The primary consideration is to minimize variation in the temperature distributions along the

boundary. To help with visualization, the top and right boundary temperatures were extracted for

each time interval and plotted. This creates two surface plots where the temperature variations are

visible.

2.2 – Mean deviation Calculator for a Given Thermocouple Position

An evaluative mechanism is necessary to objectively compare the amount of deviation for a given

thermocouple position. The code for this is found in Appendix A.3. For optimal results, there are

two ends to meet:

1. Minimize fluctuations

2. Be as close to the reference temperature as possible

The mean deviation parameter can be used to consider both. This is very similar to evaluating the

Ra value for a rough surface – just now it’s being applied to the roughness of the temperature

7

profile over time concerning a reference temperature. The formula used is provided below in

Equation 5.

𝑚𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =

1

𝑁
(∑|𝑇 − 𝑇𝑟|) (5)

In this, T is the temperature across the relevant spatial domain for the entire time duration, Tr is

the reference temperature, and N is the number of nodes within the relevant spatial and temporal

domain. A smaller mean absolute deviation indicates better performance.

So, this code computes the linear system precisely the same as in section 2.1 with the additional

consideration of the mean deviation. The primary output is the average mean deviation for the top

and right boundaries. This function also outputs the mean deviation for just the top or right

boundary, the average temperature and standard deviation along each boundary, and the time

required to run the code. This code is designed to be used in an iterative solver, so the plotting and

display functionalities from the previous code were removed in pursuit of faster solution times.

2.3 – Discrete Optimization for Mean Deviation Calculator

With the mean deviation function created, it can then be run within a progressive solver to

determine which thermocouple position yields the optimal results. The code for this can be found

in Appendix A.4.

This is immediately difficult because most numerical methods for 2D optimization consider a

continuous function whose minimum converges to a specific point in space. This presents a

problem since the model formulation is based on a series of discrete integer indexes that cannot be

further subdivided. Therefore, the optimization must exclusively consider an array of indexes

without being able to converge on non-integer values.

The computation times complicate this further. For a single index, the average computation time

for the mean deviation calculator was between 4.9 and 5.1 seconds. This is not an issue for single

computations, but for optimizing a domain of 1275 indices, the solution time becomes

approximately 105 minutes. An optimization method with a minimal amount of calculations is

thusly required.

After considering various numerical methods, a methodology was designed that scans the domain

and picks the local area of lowest mean deviation to investigate further. Ultimately, this method

cuts the calculation time down to about 12 minutes. Though there are likely better optimization

algorithms for this application, the optimizer developed works sufficiently well while being

simple.

To scan the domain, the matrix discretization was subdivided into a larger grid of 3×3 squares.

The position of the center of each square is used to compute the mean deviation for that point. The

code then searches for the index associated with the smallest mean deviation. When found, all

positions within the 3×3 square are input into the mean deviation function. This process cuts the

number of node calculations from 1275 to 144 – an 86% reduction.

A visualization of how this algorithm works is presented below in Figure 3.

8

Figure 3. Visualization of Discretized Optimization Methodology

There are several issues with this method. Foremost, it omits the points that do not fit precisely

within the 3×3 square grid. For example, in Figure 3, the leftmost column and the bottom row

would not be considered. This method also assumes a continuous 2D function that can be

approximated by sampling a ninth of the total points. If the mean deviation function unexpectedly

increases or decreases, this optimization method is unlikely to appropriately consider it.

If these assumptions and risks are assumed, the optimization method works well. Thankfully, the

issues anticipated are not presented in the results.

2.4 – Data Analysis

Another point of interest in the analysis is the effect of the heat generation gain constant kg on the

system. The previous code, the discrete optimization method, can only compute the mean deviation

along the domain for a specific kg value. So that code must be run multiple times with the constant

changed manually. This was done a total of 5 times for kg values of 1.4×104, 1.6×104, 1.8×104,

2.0×104, and 2.2×104.

This is a lot of data to process individually after running the discrete optimization method – instead,

the workspaces in MATLAB were saved to be analyzed within another script. Hence, a new script

was made exclusively to extract the relevant data and visualize the results. This script, found in

Appendix A.5, generates four items for each kg value sampled:

1. Evaluate the mean deviation at various points

2. Determine where the minimum mean deviation is

3. Plot the mean deviation surface as a function of thermocouple position

a. For the average mean deviation

b. For the top boundary mean deviation

c. For the right boundary mean deviation

4. Plot the mean deviation of the various points as a function of kg

9

16 figures are generated from this which each describes the effect of the controls system in various

capacities.

3 – Model Verification
Each code utilizes the same code described in section 2.1. To verify all the code, all that needs to

be done is to verify the first one. A slight modification to the boundary condition must be made

such that the right edge no longer undergoes convection. With this update, and running the

temperature distribution code at the point x = 0.02 m, y = 0.01 m, the following result is attainted.

Figure 4. Thermocouple Temperature and Heat Generation in Developed Code (P = (0.02, 0.01)

m; kg = 1.8×104)

Running Professor Trelles’ code under these same conditions, Figure 5 is obtained.

10

Figure 5. Known System Response (P = (0.02, 0.01) m; kg = 1.8×104)

Figures 4 and 5 are identical. When investigating these plots in MATLAB, each minima and

maxima have the same magnitudes and positions. The outputs from each code yield the same result

which implies the developed codes are accurate.

In brief, the reference and developed code produce the same result thereby verifying the developed

code.

4 – Device Performance

4.1 – Boundary Plots

Now, with the code verified, an investigation must be conducted as to which thermocouple point

within the spatial domain corresponds with the best performance.

Sample temperature distributions of the top and right boundaries are provided below in Figure 6

for a thermocouple at P = (0.01, 0.005) m and kg = 1.8×104.

11

Figure 6. Top and Right Boundary Temperature Distributions over Time (P = (0.01, 0.005) m; kg

= 1.8×104)

This type of behavior is consistent for most thermocouple points. For example, at P = (0.005,

0.005) m and kg = 1.8×104, the results are shown below in Figure 7.

Figure 7. Top and Right Boundary Temperature Distributions over Time (P = (0.005, 0.005) m;

kg = 1.8×104)

The differences between the plots in Figures 5 and 6 are barely perceptible. This further justifies

using the mean absolute deviation measurement as a tool to compare different thermocouple

positions – visual comparison is unacceptable.

4.2 – Optimization Results

The six points shown below in Figure 8 were sampled for several kg values.

12

Figure 8. Points Sampled on the Controlled Surface

(1:(0, 0); 2:(0, ymax); 3:(xmax, ymax); 4:(¾ xmax, ½ ymax); 5:(xmax, ½ ymax), 6:(xmax, 0))

The mean absolute deviations for these six points are provided below in Table 1. Note, this mean

absolute deviation is the average mean absolute deviation for the top and right boundaries

Table 1. Mean Absolute Temperature Deviations for Various kg Values [°C]

Point kg =1.4e4 kg = 1.6e4 kg =1.8e5 kg = 2.0e5 kg =2.2e6

1 6.183 5.958 5.761 5.588 5.434

2 5.880 5.613 5.378 5.169 4.981

3 5.410 5.072 4.770 4.497 4.249

4 5.558 5.242 4.961 4.708 4.479

5 6.006 5.757 5.538 5.344 5.171

6 5.506 5.183 4.893 4.633 4.398

This data is also plotted below in Figure 9.

13

Figure 9. Mean Absolute Temperature Deviation as a Function of kg

Clearly, from this plot, the thermocouple position that offers the most control is point 3 in Figure

8. This corresponds to a dx = 0 and dy = 0 from Figure 1. This means the new design should not

move the thermocouple – it is already placed at a location that will minimize the temperature

deviation. Furthermore, it indicates that performance improves as kg increases.

4.3 – Further Optimization and Considerations

To get a clearer picture of the behavior of the surface, additional parameters beyond the mean

distribution were considered including the mean temperature and sample standard deviation along

the top and right boundaries. Each of these parameters was considered across the entire 2D domain.

The plots for these, at kg = 2.2×104, are provided below in Figures 10 – 11. This value of kg was

selected since it corresponds with the best performance out of the sampled points.

14

Figure 10. Surface Plots of Average Mean Deviation and Local Mean Deviation as a function of

Thermocouple Position for kg = 2.2×104

15

Figure 11. Average Temperature, and Sample Standard Deviation for the Top and Right

Boundaries as a function of Thermocouple Position for kg = 2.2×104

These 7 plots create a much clearer image of how this system behaves. In each case, the

performance improves as the thermocouple position approaches the upper right corner (P = (0.02,

0.01) m). This means that the mean deviations and standard deviations decrease as the average

temperature increases towards the desired reference temperature. This is fantastic – it means the

two evaluative conditions described in section 2.2 (lower variability and closer average

temperature) are both maximally satisfied. There is no possible position other than P = (0.02, 0.01)

m that will better satisfy these imposed conditions. Furthermore, for every kg value tested, the

mean deviation follows the same behavior seen in Figure 10 (these plots are provided in Appendix

A.1).

Additionally, the code from section 2.5 used to process the data, the smallest average mean

variation was searched for and a value of x = 0.02000 m and y = 0.01000 m was the output for

every kg tested. So, invariably, the optimal thermocouple position is at P = (0.02, 0.01) m.

16

Bibliography

[1] J. P. Trelles, "MECH.5410 Advanced Heat Transfer; Project 3: Feedback temperature

control," University of Massachusetts, Lowell, Lowell, 2020.

17

Appendix

A.1 – Characteristic Plots for All kg Values Sampled

A.1.1 – kg = 1.4  104

18

A.1.2 – kg = 1.4  104

19

A.1.3 – kg = 1.8  104

20

A.1.4 – kg = 2.0  104

21

A.1.5 – kg = 2.2  104

22

A.2 – Temperature Distribution as a Function of Thermocouple Position
% Temperature Distribution as a Function of Thermocouple Position

%

% MECH.5410 - Advanced Heat Transfer

% Project 3

% Nicholas McLaughlin

% 11/9/2020

% NOTE --

% This code is a modification of Professor Juan Pablo Trelles' 2020 code

% "heatplate_feedcontrol.m". Slight modifications have been made, such as

% adding the mean deviation functionality, but the core functionality is

% Professor Trelles' work.

% PURPOSE ---

% This code evaluates the temperature distributions for a desired

% thermocouple position.

% CODE DESCRIPTION --

% This code is nearly identical to Professor Trelles' code. There are a

% few minor changes in order to consider different thermocouple positions

% and an update to the boundary condition. These are minor and the code

% operates nearly identically as "heatplate_feedcontrol.m".

% MODEL DESCRIPTION--

% NOTE: This section is taken from Professor Trelles' code since it is

% nearly identical in functionality:

%

% Feedback control of a flat plate with a heating element.

%

% The temperature distribution T(x,y, t) through a rectangular domain of

% size Lx x Ly, with volumetric heat capacity rhoCp, thermal conductivity

% k, and volumetric heat generation g is described by:

%

% rhoCo * dT/dt = k * d^2T/dx^2 + k * d^2T/dy^2 + g

%

% The term g(t) is positive only within the conductor region - the

% control parameter, and zero elsewhere in the domain.

%

% The goal of the control approach is, given some (constant) reference

% temperature Tr and some varying Tinf(t), adjust the value of g such

% that the value of temperature at the point p (upper-right corner) Tp

% approaches Tr. The practical motivation of the problem is to maintain the

% top boundary (y = Ly) close to the reference temperature Tr.

%

% The initial condition for the problem is: ==============================

%

% T = Tinitial, 0 < x < Lx, 0 < y < Ly, t = 0

%

% State-Space representation of the dynamic system:

%

% dT/dt = A*T + B*u ... (1)

% y = C*T ... (2)

% u = K*(r - y) ... (3)

%

% T: temperature of nodal values of temperature

23

% A: system matrix

% B: input matrix

% y: output vector, y = [Tp; 0]

% C: output matrix, C = [delta(ip, jp)], ip, jp: node number of p

% u: control vector, u = [g; Tinf]

% K: gain matrix, K = [kg 0; 0 1], (g = kg*(Tr - Tp))

% r: reference vector, r = [Tr; Tinf]

%

% Solution:

%

% T^(n+1) = (I - dt*(A - B*K*C))\(T^n + dt*B*K*r)

%

% Finite Difference Method (FDM) approximation:

% Physical domain:

% y

% ^

% |

% (0, Ly)| (top) (Lx, Ly)

% o--------------------------------o P <-- location of thermocouple

% | |

% | |

% | |

% | |

% | |

% | |

% (left)|____ |(right)

% | __ (radius R) |

% | _ |

% | _ |

% | conductor \ |

% | | |

% o--------------------------------o ----> x

% (0, 0) (bottom) (Lx, 0)

%

% Index domain:

%

% (1, 1) (bottom) (1, Nx)

% o---------------------------o -----> j (equivalent to x axis)

% | |

% | |

% | |

% | i-1,j |

% | | |

% (left)| i,j-1 - i,j - i,j+1 |(right)

% | | |

% | i+1,j |

% | |

% | |

% | |

% o---------------------------o

% (Ny,1)| (top) (Ny, Nx)

% |

% i (equivalent to y axis)

% BOUNDARY CONDITIONS ---

% The boundary conditions are as follows for each edge:

%

24

% Bottom: k * dT/dx = 0

% Left: -k * dT/dx = 0

% Top: k * dT/dy = h*(T -Tinf(t))

% Right: -k * dT/dy = h*(T -Tinf(t))

%

% Essentially, this means there is no heat transfer at the bottom and left

% boundaries but there is convective heat transfer at the top and right

% boundaries. This is consistent with the requirements of the analysis.

% BEGINNING OF CODE ---

clear; close all

% Specify which nodes are of interest

Px = 13;

Py = 13;

% Control parameters

Tr = 20; % [C] reference temperature (20)

kg = 1.8e4; % [J/m^3/K] control parameter (1.8e4)

% Spatial domain

Lx = 0.020; % [m] length of domain along x

Ly = 0.010; % [m] length of domain along y

R = 0.005; % [m] radius

Nx = 51; % number of nodes along x (101, 51)

Ny = 25; % number of nodes along y (50, 25)

% Temporal domain

tfinal = 1e2; % [s] final time (1e2)

Nt = 100; % number of temporal nodes (100)

% Properties:

rhoCp = 2e3; % [J/m^3/K] volumetric heat capacity

k = 1.0; % [W/m/K] thermal conductivity

h = 10.0; % [W/m^2/K] convective coefficient

% Initial conditions

Tinitial = 10; % [C] initial temperature

% Function describing the time dependency of external temperature

funTinf = @(t)(10 + 10 * sin(9 * pi * t / tfinal) + ...

 7 * sin(22 * pi * t / tfinal) + ...

 5 * sin(7 * pi * t / tfinal));

% Convert specified matrix position to an index

Pnode = Nx * (Py - 1) + Px;

Ctx.node = Pnode;

% Store all constants

Ctx.rhoCp = rhoCp;

Ctx.k = k;

Ctx.h = h ;

Ctx.Tr = Tr;

Ctx.kg = kg;

Ctx.Lx = Lx;

Ctx.Ly = Ly;

Ctx.R = R ;

25

Ctx.Nx = Nx;

Ctx.Ny = Ny;

% Calculate solver parameters & properties

N = Nx * Ny; % total number of unknowns (nodes)

dx = Lx / (Nx - 1); % discrete x differential

x = 0 : dx : Lx; % discrete x axis, x(1) = 0, x(Nx) = Lx

dy = Ly / (Ny - 1); % discrete y differential

y = 0 : dy : Ly; % discrete y axis, y(1) = 0, y(Ny) = Ly

dt = tfinal / (Nt - 1); % discrete t differential

t = 0 : dt : tfinal; % discrete t axis, t(1) = 0, t(Nt) = tfinal

tcoord = t;

% Preallocate space and define identity matrix

T = zeros(N, Nt); % solution for each time interval

I = speye(N, N); % identity matrix

% Calculate the system matrices for the given constants

[A, B, C, K] = funSys(Ctx);

% Populate T with the initial conditions

T(:, 1) = Tinitial;

% SOLUTION --

for n = 1 : Nt-1

 % Populate element of linear system

 r = [Tr; funTinf(t(n))];

 % Solve linear system

 T(:, n + 1) = (I - dt * (A - B * K * C)) \ ...

 (T(:, n) + dt * (B * K * r));

end

% COLLECT DATA FROM SPECIFIC TIMES --

% Set of instants as percentage of total time

nt1 = 2; % ~ 0%, initial

nt2 = round(0.20 * Nt); % 20%

nt3 = round(0.50 * Nt); % 50%

nt4 = Nt; % 100%, final

% Create x-y grid

[Xgrid, Ygrid] = meshgrid(x, y);

% Arrange solution into x-y grid

Tgrid1 = zeros(Ny, Nx);

Tgrid2 = zeros(Ny, Nx);

Tgrid3 = zeros(Ny, Nx);

Tgrid4 = zeros(Ny, Nx);

for i = 1 : Ny

 for j = 1 : Nx

 node = Nx * (i - 1) + j;

26

 Tgrid1(i, j) = T(node, nt1);

 Tgrid2(i, j) = T(node, nt2);

 Tgrid3(i, j) = T(node, nt3);

 Tgrid4(i, j) = T(node, nt4);

 end

end

% PLOTTING --

% Surface plots

figure

subplot(2, 2, 1)

surfc(Xgrid, Ygrid, Tgrid1)

view(2)

axis image

colorbar

xlabel(' x [m] ')

ylabel(' y [m] ')

zlabel(' T [C] ')

title(' T(x, y, ~t_{initial}) ')

subplot(2, 2, 2)

surfc(Xgrid, Ygrid, Tgrid2)

view(2)

axis image

colorbar

xlabel(' x [m] ')

ylabel(' y [m] ')

zlabel(' T [C] ')

title(' T(x, y, 0.2t_{final}) ')

subplot(2, 2, 3)

surfc(Xgrid, Ygrid, Tgrid3)

view(2)

axis image

colorbar

xlabel(' x [m] ');

ylabel(' y [m] ');

zlabel(' T [C] ')

title(' T(x, y, 0.5t_{final}) ')

subplot(2, 2, 4)

surfc(Xgrid, Ygrid, Tgrid4)

view(2)

axis image

colorbar

xlabel(' x [m] ')

ylabel(' y [m] ')

zlabel(' T [C] ')

title(' T(x, y, t_{final}) ')

% Temporal plots

figure

subplot(2, 1, 1)

plot(t, T(N, :), '-b', ...

 t, funTinf(t), '--r', ...

 t, Tr * ones(1, Nt), '--g')

27

legend('T_p', 'T_{\infty}', 'T_r')

xlabel(' t [s] ')

ylabel(' T [C] ')

title(' Thermocouple Temperature, T_p(t) ')

subplot(2, 1, 2)

plot(t, kg * (Tr - T(N, :)))

xlabel(' t [s] ')

ylabel(' g [J/m^3] ')

title(' Heat Generation, g(t) ')

% EXPORT BOUNDARY DATA --

% First, lets consider the topmost boundary (the orignal convection

% condition)

Ttop = zeros(Ny,tfinal);

for t = 1:tfinal

 for i = Ny

 for j = 1:Nx

 nodes = Nx * (i - 1) + j;

 Ttop(j,t) = T(nodes,t);

 end

 end

end

% Second, lets consider the rightmost boundary (the second convection

% condition)

Tright = zeros(Ny,tfinal);

for t = 1:tfinal

 for i = 1:Ny

 for j = Nx

 nodes = Nx * (i - 1) + j;

 Tright(i,t) = T(nodes,t);

 end

 end

end

% Plot the temperature distributions at the boundaries as a function of

% time

figure

surf(tcoord,x,Ttop)

title('Topmost Boundary Temperature Distribution over Time')

xlabel('Time [s]')

ylabel('Distance [m]')

zlabel('Temperature (C)')

figure

surf(tcoord,y,Tright)

title('Rightmost Boundary Temperature Distribution over Time')

xlabel('Time [s]')

ylabel('Distance [m]')

zlabel('Temperature (C)')

toc

% NESTED FUNCTION DEFINING MATRICES ---------------------------------------

function [A, B, C, K] = funSys(Ctx)

28

% RETRIEVE CONSTANTS --

rhoCp = Ctx.rhoCp;

k = Ctx.k;

h = Ctx.h ;

kg = Ctx.kg;

Lx = Ctx.Lx;

Ly = Ctx.Ly;

R = Ctx.R ;

Nx = Ctx.Nx;

Ny = Ctx.Ny;

Nx = Ctx.Nx;

Ny = Ctx.Ny;

% INITIALIZATIONS ---

dx = Lx / (Nx - 1); % differential - x

dy = Ly / (Ny - 1); % differential - y

x = 0 : dx : Lx; % discrete x axis, x(1) = 0, x(Nx) = Lx

y = 0 : dy : Ly; % discrete y axis, y(1) = 0, y(Ny) = Ly

N = Nx * Ny; % total number of unknowns (nodes)

vln = 1.0e8; % very large number

A = sparse(1, 1, 1, N, N, 5 * N); % sparse linear system matrix

B = sparse(N, 2); % input matrix

% C MATRIX --

C = sparse(2, N); % output matrix

C(1, Ctx.node) = 1; % Specify which node to consider

% GAIN MATRIX ---

K = [kg 0.0 ; % gain matrix

 0.0 1.0];

% BOUNDARY CONDITIONS ---

% For the left boundary

j = 1;

for i = 1 : Ny

 node = Nx*(i-1)+j;

 nodeb = node + 1;

 A(node, node) = vln*(-k/dx);

 A(node, nodeb) = vln*(k/dx);

end

% For the right boundary

j = Nx;

for i = 1 : Ny

 node = Nx*(i-1)+j;

 nodeb = node - 1;

 % Can verify this with Professor Trelles' code by uncommeting this line

 % and commenting out the B(node, 2) line

 %A(node, node) = vln*(-k/dx-h);

 A(node, node) = vln*(-k/dx-h);

 A(node, nodeb) = vln*(k/dx);

 B(node, 2) = vln*(h);

end

29

% For the bottom boundary

i = 1;

for j = 2 : Nx-1

 node = Nx*(i-1)+j;

 nodeb = node+Nx;

 A(node,node) = vln*(-k/dy);

 A(node,nodeb) = vln*(k/dy);

end

% For the top boundary

i = Ny;

for j = 2 : Nx-1

 node = Nx*(i-1)+j;

 nodeb = node - Nx;

 A(node, node) = vln*(-k/dy-h);

 A(node, nodeb) = vln*(k/dy);

 B(node, 2) = vln*(h);

end

% Considering internal nodes

Cleft = k / rhoCp / dx^2;

Cright = k / rhoCp / dx^2;

Cbottom = k / rhoCp / dy^2;

Ctop = k / rhoCp / dy^2;

Ccenter = -k / rhoCp * (2.0 / dx^2 + 2.0 / dy^2);

for i = 2 : Ny-1

 for j = 2 : Nx-1

 % current node:

 node = Nx * (i - 1) + j;

 % elements of B:

 if sqrt(x(j)^2 + y(i)^2) <= R

 B(node, 1) = 1.0 / rhoCp;

 end

 % elements of A:

 node_left = node - 1; % (i , j - 1)

 node_right = node + 1; % (i , j + 1)

 node_bottom = node - Nx; % (i - 1, j)

 node_top = node + Nx; % (i + 1, j)

 node_center = node ; % (i , j)

 A(node, node_left) = Cleft ;

 A(node, node_right) = Cright ;

 A(node, node_bottom) = Cbottom;

 A(node, node_top) = Ctop ;

 A(node, node_center) = Ccenter;

 end

end

end

30

A.3 – Mean Deviation Calculator for a Given Thermocouple Position
% Mean Deviation Calculator for a Given Thermocouple Position
%
% MECH.5410 - Advanced Heat Transfer
% Project 3
% Nicholas McLaughlin
% 11/9/2020

% NOTE --

% This code is a modification of Professor Juan Pablo Trelles' 2020 code

% "heatplate_feedcontrol.m". Slight modifications have been made, such as

% adding the mean deviation functionality, but the core functionality is

% Professor Trelles' work.

% PURPOSE ---
% This code evaluates the statistical variability of the temperature with
% respect to a prescribed reference temperature. This is with respect to
% the problem description in Project 3. This is measured using the mean
% deviation (MD)

% CODE DESCRIPTION --
% This particular code defines as the callable function Mean_Deviation in the
% following structure:
%
% [zavg,ztop,zright,avgtop,avgright,sigtop,sigright,TimeEnd] = ...
% Mean_Deviation(Px,Py,Lx,Ly,Nx,Ny,kg)

% INPUTS --
% Px: Node position in the x direction
% Py: Node position in the y direction
% Lx: Total length in the x direction
% Ly: Total length in the y direction
% Nx: Number of nodes in the x direction
% Ny: Number of nodes in the y direction
% kg: Heat generation gain constant

% OUTPUTS ---
% zavg : the average MD of the top and right boundaries for the
% time interval
% ztop : the MD of the top boundary over the time interval
% zright : the MD of the right boundary over the time interval
% avgtop : the average temperature of the top boundary over the time
% interval
% avgright : the average temperature of the right boundary over the time
% interval
% sigtop : the standard deviation of the temperature at the top boundary
% sigright : the standard deviation of the temperature at the right boundary
% TimeEnd : the time it took for the code to finish

% MODEL DESCRIPTION--
% NOTE: This section is taken from Professor Trelles' code since it is
% nearly identical in functionality:
%
% Feedback control of a flat plate with a heating element.
%

31

% The temperature distribution T(x,y, t) through a rectangular domain of
% size Lx x Ly, with volumetric heat capacity rhoCp, thermal conductivity
% k, and volumetric heat generation g is described by:
%
% rhoCo * dT/dt = k * d^2T/dx^2 + k * d^2T/dy^2 + g
%
% The term g(t) is positive only within the conductor region - the
% control parameter, and zero elsewhere in the domain.
%
% The goal of the control approach is, given some (constant) reference
% temperature Tr and some varying Tinf(t), adjust the value of g such
% that the value of temperature at the point p (upper-right corder) Tp
% aproaches Tr. The practical motivation of the problem is to maintain the
% top boundary (y = Ly) close to the reference temperature Tr.
%
% The initial condition for the problem is: ==============================
%
% T = Tinitial, 0 < x < Lx, 0 < y < Ly, t = 0
%
% State-Space representation of the dynamic system:
%
% dT/dt = A*T + B*u ... (1)
% y = C*T ... (2)
% u = K*(r - y) ... (3)
%
% T: temperature of nodal values of temperature
% A: system matrix
% B: input matrix
% y: output vector, y = [Tp; 0]
% C: output matrix, C = [delta(ip, jp)], ip, jp: node number of p
% u: control vector, u = [g; Tinf]
% K: gain matrix, K = [kg 0; 0 1], (g = kg*(Tr - Tp))
% r: reference vector, r = [Tr; Tinf]
%
% Solution:
%
% T^(n+1) = (I - dt*(A - B*K*C))\(T^n + dt*B*K*r)
%
% Finite Difference Method (FDM) approximation:
% Physical domain:
% y
% ^
% |
% (0, Ly)| (top) (Lx, Ly)
% o--------------------------------o P <-- location of thermocouple
% | |
% | |
% | |
% | |
% | |
% | |
% (left)|____ |(right)
% | __ (radius R) |
% | _ |
% | _ |
% | conductor \ |
% | | |

32

% o--------------------------------o ----> x
% (0, 0) (bottom) (Lx, 0)
%
% Index domain:
%
% (1, 1) (bottom) (1, Nx)
% o---------------------------o -----> j (equivalent to x axis)
% | |
% | |
% | |
% | i-1,j |
% | | |
% (left)| i,j-1 - i,j - i,j+1 |(right)
% | | |
% | i+1,j |
% | |
% | |
% | |
% o---------------------------o
% (Ny,1)| (top) (Ny, Nx)
% |
% i (equivalent to y axis)

% BOUNDARY CONDITIONS ---
% The boundary conditions are as follows for each edge:
%
% Bottom: k * dT/dx = 0
% Left: -k * dT/dx = 0
% Top: k * dT/dy = h*(T -Tinf(t))
% Right: -k * dT/dy = h*(T -Tinf(t))
%
% Essentially, this means there is no heat transfer at the bottom and left
% boundaries but there is convective heat transfer at the top and right
% boundaries. This is consistent with the requirements of the analysis.

% BEGINNING OF CODE ---
function [Zavg,Ztop,Zright,avgtop,avgright,sigtop,sigright,TimeEnd] = ...
 Mean_Deviation(Px,Py,Lx,Ly,Nx,Ny,kg)

% Begin timer
TimeStart = tic;

% Control parameters:
Tr = 20; % [C] reference temperature (20)

% Solver parameters
Nt = 100; % number of temporal nodes (100)
tfinal = 1e2; % [s] final time (1e2)

% Properties:
R = 0.005; % [m] radius
rhoCp = 2e3; % [J/m^3/K] volumetric heat capacity
k = 1.0; % [W/m/K] thermal conductivity
h = 10.0; % [W/m^2/K] convective coefficient

33

% Initial condition:
Tinitial = 10; % [C] initial temperature

% Function describing the time dependency of external temperature
funTinf = @(t)(10 + 10 * sin(9 * pi * t / tfinal) + ...
 7 * sin(22 * pi * t / tfinal) + ...
 5 * sin(7 * pi * t / tfinal));

% Convert specified matrix position to an index
Pnode = Nx * (Py - 1) + Px;
Ctx.node = Pnode;

% Store all constants
Ctx.rhoCp = rhoCp;
Ctx.k = k ;
Ctx.h = h ;
Ctx.Tr = Tr;
Ctx.kg = kg;
Ctx.Lx = Lx;
Ctx.Ly = Ly;
Ctx.R = R ;
Ctx.Nx = Nx;
Ctx.Ny = Ny;

% Calculate solver parameters & properties
N = Nx * Ny; % total number of unknowns (nodes)

dx = Lx / (Nx - 1); % discrete x differential
x = 0 : dx : Lx; % discrete x axis, x(1) = 0, x(Nx) = Lx

dy = Ly / (Ny - 1); % discrete y differential
y = 0 : dy : Ly; % discrete y axis, y(1) = 0, y(Ny) = Ly

dt = tfinal / (Nt - 1); % discrete t differential
t = 0 : dt : tfinal; % discrete t axis, t(1) = 0, t(Nt) = tfinal

% Preallocate space and define identity matrix
T = zeros(N, Nt); % solution for each time interval
I = speye(N, N); % identity matrix

% Calculate the system matrices for the given constants
[A, B, C, K] = funSys(Ctx);

% Populate T with the initial conditions
T(:, 1) = Tinitial;

% SOLUTION --
% Solution over the time interval
for n = 1:(Nt-1)

 % Populate elements of the linear system
 r = [Tr; funTinf(t(n))];

 % Solve the linear system

34

 T(:, n+1) = (I - dt*(A - B*K*C))\(T(:, n) + dt*(B*K*r));
end

% COLLECT BOUNDARY DATA ---
% Preallocate space for Ttop and Tright
Ttop = zeros(Ny,tfinal);
Tright = zeros(Ny,tfinal);

% Consider the top boundary temperature in time
for t = 1:tfinal
 for i = Ny
 for j = 1:Nx
 nodes = Nx * (i - 1) + j;
 Ttop(j,t) = T(nodes,t);
 end
 end
end

% Perform statistical calculations on the top boundary data
sigtop = std2(Ttop); % Standard deviation
avgtop = mean(Ttop,'all'); % Average temperature
[m,n] = size(Ttop);
N = m*n;
Ztop = (1/N)*(sum(abs(Ttop - Tr), 'all')); % MD Top

% Consider the right boundary temperature in time
for t = 1:tfinal
 for i = 1:Ny
 for j = Nx
 nodes = Nx * (i - 1) + j;
 Tright(i,t) = T(nodes,t);
 end
 end
end

% Perform statistical calculations on the right boundary date
sigright = std2(Tright); % Standard deviation
avgright = mean(Tright,'all'); % Average temperature
[m,n] = size(Tright);
N = m*n;
Zright = (1/N)*(sum(abs(Tright - Tr), 'all')); % MD Right

% Consider the average MD for both the top and right boundaries
Zavg = mean([Zright Ztop]);

% Store the time required to solve
TimeEnd = toc(TimeStart);

end

% NESTED FUNCTION DEFINING MATRICES ---------------------------------------
function [A, B, C, K] = funSys(Ctx)

% RETRIEVE CONSTANTS --
rhoCp = Ctx.rhoCp;

35

k = Ctx.k;
h = Ctx.h ;
kg = Ctx.kg;
Lx = Ctx.Lx;
Ly = Ctx.Ly;
R = Ctx.R ;
Nx = Ctx.Nx;
Ny = Ctx.Ny;

Nx = Ctx.Nx;
Ny = Ctx.Ny;

% INITIALIZATIONS ---
dx = Lx / (Nx - 1); % differential - x
dy = Ly / (Ny - 1); % differential - y
x = 0 : dx : Lx; % discrete x axis, x(1) = 0, x(Nx) = Lx
y = 0 : dy : Ly; % discrete y axis, y(1) = 0, y(Ny) = Ly
N = Nx * Ny; % total number of unknowns (nodes)
vln = 1.0e8; % very large number
A = sparse(1, 1, 1, N, N, 5 * N); % sparse linear system matrix
B = sparse(N, 2); % input matrix

% C MATRIX --
C = sparse(2, N); % output matrix
C(1, Ctx.node) = 1; % Specify which node to consider

% GAIN MATRIX ---
K = [kg 0.0 ; % gain matrix
 0.0 1.0];

% BOUNDARY CONDITIONS ---

% For the left boundary
j = 1;
for i = 1 : Ny
 node = Nx*(i-1)+j;
 nodeb = node + 1;
 A(node, node) = vln*(-k/dx);
 A(node, nodeb) = vln*(k/dx);
end

% For the right boundary
j = Nx;
for i = 1 : Ny
 node = Nx*(i-1)+j;
 nodeb = node - 1;
 A(node, node) = vln*(-k/dx-h);
 A(node, nodeb) = vln*(k/dx);
 B(node, 2) = vln*(h);
end

% For the bottom boundary
i = 1;
for j = 2 : Nx-1
 node = Nx*(i-1)+j;

36

 nodeb = node+Nx;
 A(node,node) = vln*(-k/dy);
 A(node,nodeb) = vln*(k/dy);
end

% For the top boundary
i = Ny;
for j = 2 : Nx-1
 node = Nx*(i-1)+j;
 nodeb = node - Nx;
 A(node, node) = vln*(-k/dy-h);
 A(node, nodeb) = vln*(k/dy);
 B(node, 2) = vln*(h);
end

% Considering internal nodes
Cleft = k / rhoCp / dx^2;
Cright = k / rhoCp / dx^2;
Cbottom = k / rhoCp / dy^2;
Ctop = k / rhoCp / dy^2;
Ccenter = -k / rhoCp * (2.0 / dx^2 + 2.0 / dy^2);

for i = 2 : Ny-1
 for j = 2 : Nx-1

 % current node:
 node = Nx * (i - 1) + j;

 % elements of B:
 if sqrt(x(j)^2 + y(i)^2) <= R
 B(node, 1) = 1.0 / rhoCp;
 end

 % elements of A:
 node_left = node - 1; % (i , j - 1)
 node_right = node + 1; % (i , j + 1)
 node_bottom = node - Nx; % (i - 1, j)
 node_top = node + Nx; % (i + 1, j)
 node_center = node ; % (i , j)

 A(node, node_left) = Cleft ;
 A(node, node_right) = Cright ;
 A(node, node_bottom) = Cbottom;
 A(node, node_top) = Ctop ;
 A(node, node_center) = Ccenter;

 end
end
end

37

A.4 – Discrete Optimization for Mean deviation Calculator
% Discrete Optimization for Mean_Deviation.m
%
% MECH.5410 - Advanced Heat Transfer
% Project 3
% Nicholas McLaughlin
% 11/9/2020

% PURPOSE ---
% This code evaluates the function Mean_Deviation.m over a variety of
% thermocouple positions. The ambition is to determine which point will
% result in the greatest minimization of variability for the top and right
% boundaries.

% CODE DESCRIPTION --
% This code makes use of a simple iterative optimization algorithm for
% discrete systems. This algorithm was created and designed by the author.
% Functionally, it considers the discretized 2D domain and divides it into
% 3x3 squares (i.e., a 27 x 9 matrix would have 9x3 squares). In the center
% of each square, the middle position is computed in Mean_Devaiation.m to
% get a reference as to the variance magnitude in that vicinity.
%
% After all the centers of each square has been evaluated, the code
% investigates the smallest variance. At this point, the entire 3x3 square
% is investigated. It is assumed that the minimum value is located within
% this square.
%
% Note, there are some portions of the domain that are not considered. For
% example, if the x-domain is discretized into 28 points, only the last 27
% will be considered. This is not a major concern because the purpose of
% this code is to generate a general idea of where the minimum variance is.
% The actual minimum can then be extrapolated and evaluated by hand.
%
% Following these calculations, the distribution of variance as a function
% of position is plotted. The variances for the top, right, and average are
% all plotted.
%
% This function also loops over a selection of k_g values. The data
% obtained is saved automatically such that it can be processed later.
% Note, this process takes quite a while. In its current configuration, it
% must compute 720 total calculations at ~5 seconds each. This ends up
% being a whole hour of computation time.

% MODEL DESCRIPTION--
% NOTE: This section is taken from Professor Trelles' code since it is
% nearly identical in functionality:
%
% Feedback control of a flat plate with a heating element.
%
% The temperature distribution T(x,y, t) through a rectangular domain of
% size Lx x Ly, with volumetric heat capacity rhoCp, thermal conductivity
% k, and volumetric heat generation g is described by:
%
% rhoCo * dT/dt = k * d^2T/dx^2 + k * d^2T/dy^2 + g
%
% The term g(t) is positive only within the conductor region - the

38

% control parameter, and zero elsewhere in the domain.
%
% The goal of the control approach is, given some (constant) reference
% temperature Tr and some varying Tinf(t), adjust the value of g such
% that the value of temperature at the point p (upper-right corner) Tp
% approaches Tr. The practical motivation of the problem is to maintain the
% top boundary (y = Ly) close to the reference temperature Tr.
%
% The initial condition for the problem is: ==============================
%
% T = Tinitial, 0 < x < Lx, 0 < y < Ly, t = 0
%
% State-Space representation of the dynamic system:
%
% dT/dt = A*T + B*u ... (1)
% y = C*T ... (2)
% u = K*(r - y) ... (3)
%
% T: temperature of nodal values of temperature
% A: system matrix
% B: input matrix
% y: output vector, y = [Tp; 0]
% C: output matrix, C = [delta(ip, jp)], ip, jp: node number of p
% u: control vector, u = [g; Tinf]
% K: gain matrix, K = [kg 0; 0 1], (g = kg*(Tr - Tp))
% r: reference vector, r = [Tr; Tinf]
%
% Solution:
%
% T^(n+1) = (I - dt*(A - B*K*C))\(T^n + dt*B*K*r)
%
% Finite Difference Method (FDM) approximation:
% Physical domain:
% y
% ^
% |
% (0, Ly)| (top) (Lx, Ly)
% o--------------------------------o P <-- location of thermocouple
% | |
% | |
% | |
% | |
% | |
% | |
% (left)|____ |(right)
% | __ (radius R) |
% | _ |
% | _ |
% | conductor \ |
% | | |
% o--------------------------------o ----> x
% (0, 0) (bottom) (Lx, 0)
%
% Index domain:
%
% (1, 1) (bottom) (1, Nx)
% o---------------------------o -----> j (equivalent to x axis)

39

% | |
% | |
% | |
% | i-1,j |
% | | |
% (left)| i,j-1 - i,j - i,j+1 |(right)
% | | |
% | i+1,j |
% | |
% | |
% | |
% o---------------------------o
% (Ny,1)| (top) (Ny, Nx)
% |
% i (equivalent to y axis)

% BOUNDARY CONDITIONS ---
% The boundary conditions are as follows for each edge:
%
% Bottom: k * dT/dx = 0
% Left: -k * dT/dx = 0
% Top: k * dT/dy = h*(T -Tinf(t))
% Right: -k * dT/dy = h*(T -Tinf(t))
%
% Essentially, this means there is no heat transfer at the bottom and left
% boundaries but there is convective heat transfer at the top and right
% boundaries. This is consistent with the requirements of the analysis.

% BEGINNING OF CODE ---
clear
close all

% Define k_g values to be considered throughout the loop
BIGG = [1.4e4 1.6e4 1.8e4 2.0e4 2.2e4];
KG = string(BIGG);

% BEGINNING OF LOOP ---
for w = 1:5
 kg = BIGG(w);

 Lx = 0.020; % [m] length of domain along x
 Ly = 0.010; % [m] length of domain along y
 tfinal = 1e2; % [s] final time (1e2)
 Nx = 51; % number of nodes along x (101, 51)
 Ny = 25; % number of nodes along y (50, 25)
 x = linspace(0,Lx,Nx);
 y = linspace(0,Ly,Ny);

 % Specify Search Domain
 xd = [0.0 0.02]; % Make sure that x(2) = Lx in Mean_Deviation.m
 yd = [0.0 0.01]; % Make sure that y(2) = Ly in Mean_Deviation.m

% INITIAL CALCULATIONS --
 % Determine the size of x and y
 [~,xn] = size(x);

40

 [~,yn] = size(y);

 % Calculate which matrix position corresponds with the cartesian
 % coordinate specified
 xld = round(Nx*(xd(1)/Lx));
 yld = round(Ny*(yd(1)/Ly));

 % Create preallocated matrices for faster computation
 T = zeros(Nx,Ny);
 zavg = zeros(Nx,Ny);
 ztop = zeros(Nx,Ny);
 zright = zeros(Nx,Ny);
 avgtop = zeros(Nx,Ny);
 avgright = zeros(Nx,Ny);
 sigtop = zeros(Nx,Ny);
 sigright = zeros(Nx,Ny);
 TimeEnd = zeros(Nx,Ny);

 % Calculate how many 3x3 squares are within the matrix
 xsquares = round((Nx-xld)/3);
 ysquares = round((Ny-yld)/3);

 % NOTIFICATION --
 % Write to the screen the estimated calculations and time of completion
 Computations = xsquares*ysquares + 8;
 write = sprintf('Total Number of Computations: %.0f \n',Computations);
 fprintf(write);

 % This estimated time is based on the computer used to develop this code.

5
 % seconds was the average time of computation, if it varies on a

different
 % PC, please update the coefficient below accordingly
 EstTime = Computations*5;
 write = sprintf('Estimated time: %.0f [s]\n',EstTime);
 fprintf(write);
 EstTime = EstTime/60;
 write = sprintf('Estimated time: %.0f [min]\n',EstTime);
 fprintf(write);

% SCAN DOMAIN ---
 % Preallocate matricies for storing the scanned data
 zIndex = zeros(xsquares,ysquares);
 zIndexTop = zIndex;
 zIndexRight = zIndex;

 % Loop to scan for the data within the domain
 for i = 1:xsquares
 for j = 1:ysquares
 % Start timer
 tic

 % Convert square indicies to the matrix discretization
 xi = Nx - (3*i - 2);
 yi = Ny - (3*j - 2);

41

 % Mean_Deviation solver
 [zavg(xi,yi),ztop(xi,yi),zright(xi,yi),avgtop(xi,yi),...
 avgright(xi,yi),sigtop(xi,yi),sigright(xi,yi),...
 TimeEnd(xi,yi)] = Mean_Deviation(xi,yi,Lx,Ly,Nx,Ny,kg);

 % Save data from the solution outside of the loop
 zIndex(i,j) = zavg(xi,yi);
 zIndexTop(i,j) = ztop(xi,yi);
 zIndexRight(i,j) = zright(xi,yi);

 % Stop timer & display time. This is primarily used to ensure the
 % code is operating
 toc
 end
 end

 % Find where the lowest mean deviation is in the resulting matrix
 [M,I] = min(zIndex(:));
 [I_row, I_col] = ind2sub(size(zIndex),I);

 % Specify the what points in the zavg matrix will have the lowest mean
 % deviation
 Px = Nx - (3*I_row - 2);
 Py = Ny - (3*I_col - 2);

% FURTHER INVESTIGATION ---
 % Notify user the initial scan is complete
 disp('Located area to investigate further')
 load gong
 sound(y,Fs)

 % Second loop to calculate the 9 points around (and including) the
 % smallest value found from the scan
 for i = (Px-1):(Px+1)
 for j = (Py-1):(Py+1)
 % Start timer
 tic
 % Update the exisiting matrices with the solutions for the

specific
 % points
 [zavg(i,j),ztop(i,j),zright(i,j),avgtop(i,j),...
 avgright(i,j),sigtop(i,j),sigright(i,j),...
 TimeEnd(i,j)] = Mean_Deviation(i,j,Lx,Ly,Nx,Ny,kg);
 % Stop timer & display time. This is primarily used to ensure the
 % code is operating
 toc
 end
 end
 filename = strcat('KG',KG(w),'.mat');
 save(filename);
end

42

A.5 – Data Analysis
% Analysis of Data from Iterative_Method.m
%
% MECH.5410 - Advanced Heat Transfer
% Project 3
% Nicholas McLaughlin
% 11/9/2020

% PURPOSE ---
% This code processes the immense amount of data from Iterative_Method.m.
% The reason these commands are not integrated into the code initially is
% due to the changing asthetic and numerical requirements for considering
% the data. Instead of waiting for ~80 minutes of code processing, this
% code can analyze all the data generated in under 5 seconds.

% CODE DESCRIPTION --
% This series of code loads the workspaces saved after each run of
% Iterative_Method.m for different values of k_g. There are several results
% desired from this processing:
% 1. Find the mean deviation at 6 points
% 2. Find where the minimum mean deviation is in the matrix z_avg
% 3. Plot the mean deviation surface as a function of thermocouple
% position
% a.) For the average mean deviation
% b.) For the top boundary mean deviation
% c.) For the right boundary mean deviation
% 4. Plot the mean deviation of the 6 points as a function of k_g
%
% Necessarily, this code is repetitive. Since there will be 5 sections of
% code that are nearly identical, only the first section will be annotated
% with detail. The same annotations apply equally well to the subsequent 4
% sections.
%
% The 6 points being considered are drawn below :
%
% ___
% |(2) (3)|
% | |
% | |
% | |
% | |
% | |
% | (4) |
% | |
% | |
% | |
% | |
% | |
% |(1)__(5)____________(6)|

% BEGIN CODE --
clear
close all

43

% Preallocate the matrix z to store the MD values for the 6 points
MD = zeros(6,5);

% Create the k_g vector used to order each data set
g = [1.4e4 1.6e4 1.8e4 2.0e4 2.2e4];

% LOAD FIRST DATA SET ---
load('KG14000.mat')

% Measure the size of the matrix zIndex
[m,n] = size(zIndex);

% Extract the mean deviation for each of the 6 points
MD(1,1) = zIndex(end,end); % Lower left corner
MD(2,1) = zIndex(end,1); % Upper left corner
MD(3,1) = zIndex(1,1); % Upper right corner
MD(4,1) = zIndex(round(0.25*m),round(0.5*n)); % Middle-right
MD(5,1) = zIndex(end,round(0.5*n)); % Middle right edge
MD(6,1) = zIndex(1,end); % Lower right corner

% Search through the zavg matrix and change all the zero elements to 10
% This is necessary because we want to know what the minimum value is of
% the data collected - and we purposefully did not fill the zeros matrix
% initially
[m,n] = size(zavg);
for i = 1:m
 for j = 1:n
 if zavg(i,j) == 0
 zavg(i,j) = 10;
 end
 end
end

% Find where the minimum mean deviation value is
[~,I] = min(zavg(:));
[I_row, I_col] = ind2sub(size(zavg),I);

% Conver the columns and rows into the physical distances
xdist = (I_row/Nx)*Lx;
ydist = (I_col/Ny)*Ly;

% Display the results to screen
write = 'Minimum for k_g = 1.4e4 \n x = %.6f [m] y = %.6f [m] \n \n';
fprintf(write,xdist,ydist)

% Create indicies for plotting
i = 1:xsquares;
j = 1:ysquares;
xi = (Nx - (3*i - 2))*(Lx/Nx);
yi = (Ny - (3*j - 2))*(Ly/Ny);

% Plot the mean mean deviation as a function of thermocouple position
figure
surf(yi,xi,zIndex);
xlabel('y-Dimension [m]')

44

ylabel('x-Dimension [m]')
zlabel('Mean Deviation [°C]')
title({' Mean Deviation vs Thermocouple Position',...
 ' (k_g = 1.40 x 10^4) '})
view(138,-27)
daspect([1 1 200])

% Plot the top mean deviation as a function of thermocouple position
figure
surf(yi,xi,zIndexTop)
xlabel('y-Dimension [m]')
ylabel('x-Dimension [m]')
zlabel('Mean Deviation [°C]')
title({' Mean Deviation vs Thermocouple Position (Top Edge)',...
 ' (k_g = 1.40 x 10^4) '})
view(138,-27)
daspect([1 1 200])

% Plot the right mean deviation as a function of thermocouple position
figure
surf(yi,xi,zIndexRight)
xlabel('y-Dimension [m]')
ylabel('x-Dimension [m]')
zlabel('Mean Deviation [°C]')
title({' Mean Deviation vs Thermocouple Position (Right Edge)',...
 ' (k_g = 1.40 x 10^4) '})
view(138,-27)
daspect([1 1 200])

% LOAD SECOND DATA SET --
% See data set 1 for detailed explanation of code
load('KG16000.mat')
[m,n] = size(zIndex);

MD(1,2) = zIndex(end,end);
MD(2,2) = zIndex(end,1);
MD(3,2) = zIndex(1,1);
MD(4,2) = zIndex(round(0.25*m),round(0.5*n));
MD(5,2) = zIndex(end,round(0.5*n));
MD(6,2) = zIndex(1,end);

[m,n] = size(zavg);
for i = 1:m
 for j = 1:n
 if zavg(i,j) == 0
 zavg(i,j) = 10;
 end
 end
end

% Create indicies for plotting
i = 1:xsquares;
j = 1:ysquares;
xi = (Nx - (3*i - 2))*(Lx/Nx);
yi = (Ny - (3*j - 2))*(Ly/Ny);

45

[~,I] = min(zavg(:));
[I_row, I_col] = ind2sub(size(zavg),I);
write = 'Minimum for k_g = 1.6e4 \n x = %.6f [m] y = %.6f [m] \n \n';
xdist = (I_row/Nx)*Lx;
ydist = (I_col/Ny)*Ly;
fprintf(write,xdist,ydist)

figure
surf(yi,xi,zIndex);
xlabel('y-Dimension [m]')
ylabel('x-Dimension [m]')
zlabel('Mean Deviation [°C]')
title({'Mean Deviation vs Thermocouple Position',...
 ' (k_g = 1.60 x 10^4) '})
view(138,-27)
daspect([1 1 200])

figure
surf(yi,xi,zIndexTop)
xlabel('y-Dimension [m]')
ylabel('x-Dimension [m]')
zlabel('Mean Deviation [°C]')
title({'Mean Deviation vs Thermocouple Position (Top Edge)',...
 ' (k_g = 1.60 x 10^4) '})
view(138,-27)
daspect([1 1 200])

figure
surf(yi,xi,zIndexRight)
xlabel('y-Dimension [m]')
ylabel('x-Dimension [m]')
zlabel('Mean Deviation [°C]')
title({' Mean Deviation vs Thermocouple Position (Right Edge)',...
 ' (k_g = 1.60 x 10^4) '})
view(138,-27)
daspect([1 1 200])

% LOAD THIRD DATA SET ---
% See data set 1 for detailed explanation of code
load('KG18000.mat')
[m,n] = size(zIndex);

MD(1,3) = zIndex(end,end);
MD(2,3) = zIndex(end,1);
MD(3,3) = zIndex(1,1);
MD(4,3) = zIndex(round(0.25*m),round(0.5*n));
MD(5,3) = zIndex(end,round(0.5*n));
MD(6,3) = zIndex(1,end);

[m,n] = size(zavg);
for i = 1:m
 for j = 1:n
 if zavg(i,j) == 0
 zavg(i,j) = 10;

46

 end
 end
end

i = 1:xsquares;
j = 1:ysquares;
xi = (Nx - (3*i - 2))*(Lx/Nx);
yi = (Ny - (3*j - 2))*(Ly/Ny);

[~,I] = min(zavg(:));
[I_row, I_col] = ind2sub(size(zavg),I);
write = 'Minimum for k_g = 1.8e4 \n x = %.6f [m] y = %.6f [m] \n \n';
xdist = (I_row/Nx)*Lx;
ydist = (I_col/Ny)*Ly;
fprintf(write,xdist,ydist)

figure
surf(yi,xi,zIndex);
xlabel('y-Dimension [m]')
ylabel('x-Dimension [m]')
zlabel('Mean Deviation [°C]')
title({'Mean Deviation vs Thermocouple Position',...
 ' (k_g = 1.80 x 10^4) '})
view(138,-27)
daspect([1 1 200])

figure
surf(yi,xi,zIndexTop)
xlabel('y-Dimension [m]')
ylabel('x-Dimension [m]')
zlabel('Mean Deviation [°C]')
title({' Mean Deviation vs Thermocouple Position (Top Edge)',...
 ' (k_g = 1.80 x 10^4) '})
view(138,-27)
daspect([1 1 200])

figure
surf(yi,xi,zIndexRight)
xlabel('y-Dimension [m]')
ylabel('x-Dimension [m]')
zlabel('Mean Deviation [°C]')
title({' Mean Deviation vs Thermocouple Position (Right Edge)',...
 ' (k_g = 1.80 x 10^4) '})
view(138,-27)
daspect([1 1 200])

% LOAD FOURTH DATA SET --
% See data set 1 for detailed explanation of code
load('KG20000.mat')
[m,n] = size(zIndex);

MD(1,4) = zIndex(end,end);
MD(2,4) = zIndex(end,1);
MD(3,4) = zIndex(1,1);
MD(4,4) = zIndex(round(0.25*m),round(0.5*n));

47

MD(5,4) = zIndex(end,round(0.5*n));
MD(6,4) = zIndex(1,end);

i = 1:xsquares;
j = 1:ysquares;
xi = (Nx - (3*i - 2))*(Lx/Nx);
yi = (Ny - (3*j - 2))*(Ly/Ny);

[m,n] = size(zavg);
for i = 1:m
 for j = 1:n
 if zavg(i,j) == 0
 zavg(i,j) = 10;
 end
 end
end

[~,I] = min(zavg(:));
[I_row, I_col] = ind2sub(size(zavg),I);
write = 'Minimum for k_g = 2.0e4 \n x = %.6f [m] y = %.6f [m] \n \n';
xdist = (I_row/Nx)*Lx;
ydist = (I_col/Ny)*Ly;
fprintf(write,xdist,ydist)

figure
surf(yi,xi,zIndex);
xlabel('y-Dimension [m]')
ylabel('x-Dimension [m]')
zlabel('Mean Deviation [°C]')
title({' Mean Deviation vs Thermocouple Position',...
 ' (k_g = 2.00 x 10^4) '})
view(138,-27)
daspect([1 1 200])

figure
surf(yi,xi,zIndexTop)
xlabel('y-Dimension [m]')
ylabel('x-Dimension [m]')
zlabel('Mean Deviation [°C]')
title({' Mean Deviation vs Thermocouple Position (Top Edge)',...
 ' (k_g = 2.00 x 10^4) '})
view(138,-27)
daspect([1 1 200])

figure
surf(yi,xi,zIndexRight)
xlabel('y-Dimension [m]')
ylabel('x-Dimension [m]')
zlabel('Mean Deviation [°C]')
title({' Mean Deviation vs Thermocouple Position (Right Edge)',...
 ' (k_g = 2.00 x 10^4) '})
view(138,-27)
daspect([1 1 200])

% LOAD FIFTH DATA SET ---

48

% See data set 1 for detailed explanation of code
load('KG22000.mat')
[m,n] = size(zIndex);

MD(1,5) = zIndex(end,end);
MD(2,5) = zIndex(end,1);
MD(3,5) = zIndex(1,1);
MD(4,5) = zIndex(round(0.25*m),round(0.5*n));
MD(5,5) = zIndex(end,round(0.5*n));
MD(6,5) = zIndex(1,end);

[m,n] = size(zavg);
for i = 1:m
 for j = 1:n
 if zavg(i,j) == 0
 zavg(i,j) = 10e10;
 end
 end
end

i = 1:xsquares;
j = 1:ysquares;
xi = (Nx - (3*i - 2))*(Lx/Nx);
yi = (Ny - (3*j - 2))*(Ly/Ny);

[~,I] = min(zavg(:));
[I_row, I_col] = ind2sub(size(zavg),I);
write = 'Minimum for k_g = 2.2e4 \n x = %.6f [m] y = %.6f [m] \n \n';
xdist = (I_row/Nx)*Lx;
ydist = (I_col/Ny)*Ly;
fprintf(write,xdist,ydist)

figure
surf(yi,xi,zIndex);
xlabel('y-Dimension [m]')
ylabel('x-Dimension [m]')
zlabel('Mean Deviation [°C]')
title({' Mean Deviation vs Thermocouple Position',...
 ' (k_g = 2.20 x 10^4) '})
view(138,-27)
daspect([1 1 200])

figure
surf(yi,xi,zIndexTop)
xlabel('y-Dimension [m]')
ylabel('x-Dimension [m]')
zlabel('Mean Deviation [°C]')
title({' Mean Deviation vs Thermocouple Position (Top Edge)',...
 ' (k_g = 2.20 x 10^4) '})
view(138,-27)
daspect([1 1 200])

figure
surf(yi,xi,zIndexRight)
xlabel('y-Dimension [m]')

49

ylabel('x-Dimension [m]')
zlabel('Mean Deviation [°C]')
title({' Mean Deviation vs Thermocouple Position (Right Edge)',...
 ' (k_g = 2.20 x 10^4) '})
daspect([1 1 200])
view(138,-27)

xsquares = round((Nx-xld)/3);
ysquares = round((Ny-yld)/3);

for i = 1:xsquares
 for j = 1:ysquares
 xii = Nx - (3*i - 2);
 yii = Ny - (3*j - 2);
 AvgRight(i,j) = avgright(xii,yii);
 AvgTop(i,j) = avgtop(xii,yii);
 SigRight(i,j) = sigright(xii,yii);
 SigTop(i,j) = sigtop(xii,yii);

 end
end

figure
surf(yi,xi,AvgRight)
xlabel('y-Dimension [m]')
ylabel('x-Dimension [m]')
zlabel('Mean Deviation [°C]')
title({' Mean Temperature vs Thermocouple Position (Right Edge)',...
 ' (k_g = 2.20 x 10^4) '})
daspect([1 1 200])
view(138,-27)

figure
surf(yi,xi,AvgTop)
xlabel('y-Dimension [m]')
ylabel('x-Dimension [m]')
zlabel('Mean Deviation [°C]')
title({' Mean Temperature vs Thermocouple Position (Top Edge)',...
 ' (k_g = 2.20 x 10^4) '})
daspect([1 1 200])
view(138,-27)

figure
surf(yi,xi,SigRight)
xlabel('y-Dimension [m]')
ylabel('x-Dimension [m]')
zlabel('Mean Deviation [°C]')
title({' Standard Deviation vs Thermocouple Position (Right Edge)',...
 ' (k_g = 2.20 x 10^4) '})
daspect([1 1 200])
view(138,-27)

figure
surf(yi,xi,SigTop)
xlabel('y-Dimension [m]')

50

ylabel('x-Dimension [m]')
zlabel('Mean Deviation [°C]')
title({' Standard Devation vs Thermocouple Position (Top Edge)',...
 ' (k_g = 2.20 x 10^4) '})
daspect([1 1 200])
view(138,-27)

% FINAL PLOTTING --
% Consider each of the 6 points as a function of k_g
figure
hold on
plot(g,MD(1,:))
plot(g,MD(2,:))
plot(g,MD(3,:))
plot(g,MD(4,:))
plot(g,MD(5,:))
plot(g,MD(6,:))

legend('Point 1','Point 2','Point 3','Point 4','Point 5','Point 6')
xlabel('k_g')
ylabel('Mean Deviation')
title('Mean Deviation for Various Points as a Function of k_g')

