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Variables Used
Below is a complete list of the variables and notations used throughout this analysis.

Variable | Description Value/Equation Units
L, Length of the surface along x 0.020 | [m]
L, Length of the surface along y 0.010 | [m]
R Radius of the circular quadrant heating element 0.005 | [m]

trinal Final time to be considered 100 | [s]
pC, Volumetric heat capacity 2000 | [I/m3¥/K]
k Thermal conductivity 1.0 | [W/m?/K]
10 + 10 sin( ot )
final
To Ambient temperature + 7sin ( 2}:;) [°C]
+5 sin( i )
final
Tinitqr | Initial temperature 10 | [°C]
T, Reference temperature 20 | ['C]
g Heat generation Controlled | [J/m®]
Parameter
T Temperature Variable | ['C]
N, Spatial nodes along x 51 |[ ]
N,, Spatial nodes along y 25 [ ]
N Total number of nodes N, XN, | []
i Index along y Variable | [ ]
j Index along x Variable | [ ]
T Discretized temperature vector See Equation 3 | [°C]
A System matrix See Codein | [ ]
Appendix
B Input matrix See Section 1.6 | [ ]
u Control vector See Equation 4.1 | [ ]
y Output vector See Equation 4.2 | ['C]
C Output matrix See Section 1.7 | [ ]
K Gain matrix See Equation 4.4 | [ ]
r Reference vector See Equation 4.3 | [°C]
ot Desired time interval User defined | [s]
kg, Heat generation gain Variable | [ ]




1 — Thermal Model

1.1 — Schematic Model

This analysis considers the efficacy of a surface-temperature control system for various
thermocouple configurations and gain coefficients. A schematic of this, for the general case, is
shown below in Figure 1.
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Figure 1. Schematic Diagram of Surface of Interest

The control system is used to regulate the temperature at the top and right boundaries such that
there is a minimal deviation from a specified reference temperature. The control system uses a
heater in the shape of a circular quadrant (lower-left corner) to regulate the temperatures along
these boundaries.

Previously, a control system was developed to consider the system in Figure 1 when dx = dy =0,
and the right boundary is under the same conditions as the left and bottom boundaries. Therefore,
a slight modification needs to be made to the existing controls to account for variable dx and dy as
well as the convective right boundary condition.

1.2 — Background Theory
The heat transfer considerations within this analysis are based on the “linear constant-properties
heat conduction equation” as shown below in Equation 1.

aT k g

—_— = V2T 4 =
ot pGC, M pCy (1)

This equation fundamentally describes the heat transfer phenomena occurring on the surface. For
1.3 — Discretizing the Domain
If the surface is to be discretized into a grid Nx by Ny, each cell can be assigned an index value.

Index i = 1 begins at the origin and increases along x until i = Nx. Then, i = Nx + 1 begins 1 row
above and continues the pattern. This continues until i = N = Nx x Ny in the top right corner.



An example of this indexing for Nx = 20 and Ny = 10 is provided below in Figure 2.
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Figure 2. Discretized Surface for Nx = 20 and Ny = 10

1.4 — Converting between Cartesian Coordinates and Indices

Any 2D Cartesian coordinate requires a transformation into the indices used to discretize the area.
In MATLAB, this transformation is given by the following code.

Px = round (Nx* (x/Lx)) ;

Py = round(Ny* (y/Ly));

Node = Nx * ( Py - 1 ) + Px;

Effectively, this converts the desired position x and y into a single value where the point in the x-
y plane would approximately be on the discretized grid.

1.5 — State-Space Formulation
A general system with feedback control and a reference input can be described by the following
equations [1].

T = AT + Bu (2.1)
y=CT (2.2)
u=K@r-y) (2.3)

In these equations T is the discretized temperature vector, A is the system matrix, B is the input
matrix, u is the control vector, y the output vector, C the output matrix, K the gain matrix, and r
the reference vector [1]. The temperature at a specific time interval, &, is provided below in
Equation 3 [1].

T =[] — §t(A — BCK)|"[T" + 6¢tBKr] ©)

The matrix k and the vectors u, y, and r used in the previous equations are further defined in
Equations 4.1-4.4.
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1.6 — The Input Matrix

The input matrix, B, depends on the geometry and boundary conditions of the surface. In general,
it is a size Nx2 matrix filled with zeros. Only at special locations is bjj = 0. These locations are
defined as follows:

b;; = p% when the i node corresponds to the geometry generating heat
p

b;; = —h when the i node corresponds to the convective boundaries
Else, bl] =0

To consider the boundaries in the index notation, the locations can be considered in the matrix
discretization first then converted into the index form. For example, the top boundary occurs in
the matrix discretization as the entire last row. Each position in the last row (i.e., Nxi = 1:Nx and
Nyi = Ny) can be converted into the index form with the MATLAB code provided in 1.3 and the
boundary conditions stored in context. An example of this for the top boundary is provided below:

i = Ny;
for 3 = 2 : Nx-1
node = Nx * (1 -1) + 3;
nodeb = node - Nx;
A( node, node ) = vln * ( -k / dy - h );
A( node, nodeb ) = vln * ( k / dy ) ;
B( node, 2 ) = vln * ( h ) ;
end

For the entire code considering each boundary, see the Appendix.

The locations of the heat generation are a bit more involved to evaluate. The positions in the
discretized matrix need to be checked if they are within the area of the circular quadrant then they
can be stored in context. The code for this is provided below.

for i = 2 : Ny-1
for j = 2 : Nx-1

node = Nx * (i -1 ) + j;
if sgrt( x( 3 )"2 + y( 1 )72 ) <= R
B( node, 1 ) = 1.0 / rhoCp;

end
end
end



1.7 — The Output Matrix
The output matrix, C, is a size 2xN matrix filled with zeros. Only when the following condition is
satisfied does cij = 0

c1j = 1 when the j™ node corresponds to the point where the thermocouple is
Else, Cij = 0

This is not trivial — this process requires the index transformation provided in 1.3 to consider the
point in context. This code is repeated below.

Pnode = Nx * ( Py - 1 ) + Px;
Ctx.node = Pnode;

C = sparse (2, N);

C(l, Ctx.node) = 1;

2 — Numerical Solution

2.1 — Temperature Distribution as a Function of Thermocouple Position

To consider the temperature distribution resulting from the surface-temperature control system, a
code in MATLAB was developed to evaluate the linear system described in Equations 2 and 3.
This code can be found in Appendix A.2. The majority of the functional code comes from Professor
Juan Pablo Trelles’ code “heatplate feedcontrol.m”. Professor Trelles’ code evaluates the linear
system over a prescribed time range and plots the surface temperature distribution for several
instants as well as the controls response. The thermocouple is always considered to be in the top
right corner and only the top boundary undergoes convection with the outside environment.

To restructure this code, such that it will work for various thermocouple positions and a right-side
convection condition, slight modifications to the base code was necessary. This consists of adding
the index conversion from section 1.4 and changing the right-side boundary condition to include
convection. These are relatively minor changes but drastically change the results.

The primary consideration is to minimize variation in the temperature distributions along the
boundary. To help with visualization, the top and right boundary temperatures were extracted for
each time interval and plotted. This creates two surface plots where the temperature variations are
visible.

2.2 — Mean deviation Calculator for a Given Thermocouple Position

An evaluative mechanism is necessary to objectively compare the amount of deviation for a given
thermocouple position. The code for this is found in Appendix A.3. For optimal results, there are
two ends to meet:

1. Minimize fluctuations
2. Beas close to the reference temperature as possible

The mean deviation parameter can be used to consider both. This is very similar to evaluating the
Ra value for a rough surface — just now it’s being applied to the roughness of the temperature



profile over time concerning a reference temperature. The formula used is provided below in
Equation 5.

1
mean absolute deviation = N (ZIT — Trl) (5)

In this, T is the temperature across the relevant spatial domain for the entire time duration, Ty is
the reference temperature, and N is the number of nodes within the relevant spatial and temporal
domain. A smaller mean absolute deviation indicates better performance.

So, this code computes the linear system precisely the same as in section 2.1 with the additional
consideration of the mean deviation. The primary output is the average mean deviation for the top
and right boundaries. This function also outputs the mean deviation for just the top or right
boundary, the average temperature and standard deviation along each boundary, and the time
required to run the code. This code is designed to be used in an iterative solver, so the plotting and
display functionalities from the previous code were removed in pursuit of faster solution times.

2.3 — Discrete Optimization for Mean Deviation Calculator

With the mean deviation function created, it can then be run within a progressive solver to
determine which thermocouple position yields the optimal results. The code for this can be found
in Appendix A.4.

This is immediately difficult because most numerical methods for 2D optimization consider a
continuous function whose minimum converges to a specific point in space. This presents a
problem since the model formulation is based on a series of discrete integer indexes that cannot be
further subdivided. Therefore, the optimization must exclusively consider an array of indexes
without being able to converge on non-integer values.

The computation times complicate this further. For a single index, the average computation time
for the mean deviation calculator was between 4.9 and 5.1 seconds. This is not an issue for single
computations, but for optimizing a domain of 1275 indices, the solution time becomes
approximately 105 minutes. An optimization method with a minimal amount of calculations is
thusly required.

After considering various numerical methods, a methodology was designed that scans the domain
and picks the local area of lowest mean deviation to investigate further. Ultimately, this method
cuts the calculation time down to about 12 minutes. Though there are likely better optimization
algorithms for this application, the optimizer developed works sufficiently well while being
simple.

To scan the domain, the matrix discretization was subdivided into a larger grid of 3x3 squares.
The position of the center of each square is used to compute the mean deviation for that point. The
code then searches for the index associated with the smallest mean deviation. When found, all
positions within the 3x3 square are input into the mean deviation function. This process cuts the
number of node calculations from 1275 to 144 — an 86% reduction.

A visualization of how this algorithm works is presented below in Figure 3.
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Figure 3. Visualization of Discretized Optimization Methodology

There are several issues with this method. Foremost, it omits the points that do not fit precisely
within the 3x3 square grid. For example, in Figure 3, the leftmost column and the bottom row
would not be considered. This method also assumes a continuous 2D function that can be
approximated by sampling a ninth of the total points. If the mean deviation function unexpectedly
increases or decreases, this optimization method is unlikely to appropriately consider it.

If these assumptions and risks are assumed, the optimization method works well. Thankfully, the
issues anticipated are not presented in the results.

2.4 — Data Analysis

Another point of interest in the analysis is the effect of the heat generation gain constant kq on the
system. The previous code, the discrete optimization method, can only compute the mean deviation
along the domain for a specific kg value. So that code must be run multiple times with the constant
changed manually. This was done a total of 5 times for kg values of 1.4x10%, 1.6x10%, 1.8x10%,
2.0x10% and 2.2x10%.

This is a lot of data to process individually after running the discrete optimization method — instead,
the workspaces in MATLAB were saved to be analyzed within another script. Hence, a new script
was made exclusively to extract the relevant data and visualize the results. This script, found in
Appendix A.5, generates four items for each kq value sampled:

1. Evaluate the mean deviation at various points

2. Determine where the minimum mean deviation is

3. Plot the mean deviation surface as a function of thermocouple position
a. For the average mean deviation
b. For the top boundary mean deviation
c. For the right boundary mean deviation

4. Plot the mean deviation of the various points as a function of kg



16 figures are generated from this which each describes the effect of the controls system in various
capacities.

3 — Model Verification

Each code utilizes the same code described in section 2.1. To verify all the code, all that needs to
be done is to verify the first one. A slight modification to the boundary condition must be made
such that the right edge no longer undergoes convection. With this update, and running the
temperature distribution code at the point x = 0.02 m, y = 0.01 m, the following result is attainted.

Thermocouple Temperature, Tp( t)

t[s]
«10° Heat Generation, g(t)
T T T

g [Jim?]

0 10 20 30 40 50 60 70 80 90 100
ts]

Figure 4. Thermocouple Temperature and Heat Generation in Developed Code (P =(0.02, 0.01)
m; kg = 1.8x10%

Running Professor Trelles’ code under these same conditions, Figure 5 is obtained.
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Figure 5. Known System Response (P = (0.02, 0.01) m; kg = 1.8x10%)

Figures 4 and 5 are identical. When investigating these plots in MATLAB, each minima and
maxima have the same magnitudes and positions. The outputs from each code yield the same result
which implies the developed codes are accurate.

In brief, the reference and developed code produce the same result thereby verifying the developed
code.

4 — Device Performance

4.1 — Boundary Plots
Now, with the code verified, an investigation must be conducted as to which thermocouple point

within the spatial domain corresponds with the best performance.

Sample temperature distributions of the top and right boundaries are provided below in Figure 6
for a thermocouple at P = (0.01, 0.005) m and kg = 1.8x10%,

10



Topmost Boundary Temperature Distribution over Time Rightmost Boundary Temperature Distribution over Time
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Figure 6. Top and Right Boundary Temperature Distributions over Time (P = (0.01, 0.005) m; kg
= 1.8x10%

This type of behavior is consistent for most thermocouple points. For example, at P = (0.005,
0.005) m and kg = 1.8x10%, the results are shown below in Figure 7.
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Figure 7. Top and Right Boundary Temperature Distributions over Time (P = (0.005, 0.005) m;
kg = 1.8x10%)

The differences between the plots in Figures 5 and 6 are barely perceptible. This further justifies
using the mean absolute deviation measurement as a tool to compare different thermocouple
positions — visual comparison is unacceptable.

4.2 — Optimization Results
The six points shown below in Figure 8 were sampled for several kq values.
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The mean absolute deviations for these six points are provided below in Table 1. Note, this mean
absolute deviation is the average mean absolute deviation for the top and right boundaries

Table 1. Mean Absolute Temperature Deviations for Various kg Values [ °C]

Point | kg =1.4e4 | kg=1.6e4 | kg =1.8e5 | kg = 2.0e5 | kg =2.2e6
1 6.183 5.958 5.761 5.588 5.434
2 5.880 5.613 5.378 5.169 4.981
3 5.410 5.072 4.770 4.497 4.249
4 5.558 5.242 4.961 4.708 4.479
5 6.006 5.757 5.538 5.344 5171
6 5.506 5.183 4.893 4.633 4.398

This data is also plotted below in Figure 9.

12
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Mean Deviation for Various Points as a Function of kg
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Figure 9. Mean Absolute Temperature Deviation as a Function of kg

Clearly, from this plot, the thermocouple position that offers the most control is point 3 in Figure
8. This corresponds to a dx = 0 and dy = 0 from Figure 1. This means the new design should not
move the thermocouple — it is already placed at a location that will minimize the temperature
deviation. Furthermore, it indicates that performance improves as kg increases.

4.3 — Further Optimization and Considerations
To get a clearer picture of the behavior of the surface, additional parameters beyond the mean
distribution were considered including the mean temperature and sample standard deviation along
the top and right boundaries. Each of these parameters was considered across the entire 2D domain.
The plots for these, at kg = 2.2x10%, are provided below in Figures 10 — 11. This value of ky was
selected since it corresponds with the best performance out of the sampled points.

13



Mean Deviation vs Thermocouple Position
(kg =220 x 10%)

0.02

Mean Deviation [°C]

0.005 0.005

x-Dimension [m
y-Dimension [m] o 4a )

Mean Deviation vs Thermocouple Position (Top Edge) Mean Deviation vs Thermocouple Position (Right Edge)

(ky=220x 10%) (ky=2.20x 104

_ 55 5

&2 a

= =55

g s g

ko z . 0.02
g 8]

8 48 0.02 2

c

g [

g 245

= 0.01

0.01
0.005 0.005 0.005
e i i x-Dimension [m]

y-Dimension [m] o 0 xDimension [} y-Dimension [m] o 0

Figure 10. Surface Plots of Average Mean Deviation and Local Mean Deviation as a function of
Thermocouple Position for kg = 2.2x10*
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Figure 11. Average Temperature, and Sample Standard Deviation for the Top and Right
Boundaries as a function of Thermocouple Position for kg = 2.2x10*

These 7 plots create a much clearer image of how this system behaves. In each case, the
performance improves as the thermocouple position approaches the upper right corner (P = (0.02,
0.01) m). This means that the mean deviations and standard deviations decrease as the average
temperature increases towards the desired reference temperature. This is fantastic — it means the
two evaluative conditions described in section 2.2 (lower variability and closer average
temperature) are both maximally satisfied. There is no possible position other than P = (0.02, 0.01)
m that will better satisfy these imposed conditions. Furthermore, for every kg value tested, the

mean deviation follows the same behavior seen in Figure 10 (these plots are provided in Appendix
Al).

Additionally, the code from section 2.5 used to process the data, the smallest average mean
variation was searched for and a value of x = 0.02000 m and y = 0.01000 m was the output for
every kg tested. So, invariably, the optimal thermocouple position is at P = (0.02, 0.01) m.
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Appendix

A.1 — Characteristic Plots for All kg Values Sampled
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Al12—-Kg=1.4 x10*
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A.1.3 kg =1.8 x10*
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Al.4—Kkg=20 x10*
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A15—-Kkg=22 x10*
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A.2 — Temperature Distribution as a Function of Thermocouple Position
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NOTE === mm oo
This code is a modification of Professor Juan Pablo Trelles' 2020 code
"heatplate feedcontrol.m". Slight modifications have been made, such as
adding the mean deviation functionality, but the core functionality is
Professor Trelles' work.

PURPOSE == == m—m o o e e
This code evaluates the temperature distributions for a desired
thermocouple position.

CODE DESCRIPTION === === m o m o m o e e
This code is nearly identical to Professor Trelles' code. There are a

few minor changes in order to consider different thermocouple positions
and an update to the boundary condition. These are minor and the code
operates nearly identically as "heatplate feedcontrol.m".

MODEL DESCRIPTION= === == = oo e e e e e e e e e e
NOTE: This section is taken from Professor Trelles' code since it is
nearly identical in functionality:

Feedback control of a flat plate with a heating element.

The temperature distribution T (x,y, t) through a rectangular domain of
size Lx x Ly, with volumetric heat capacity rhoCp, thermal conductivity
k, and volumetric heat generation g is described by:

rhoCo * dT/dt = k * d"2T/dx"2 + k * d*"2T/dy"2 + g

The term g( t ) is positive only within the conductor region - the
control parameter, and zero elsewhere in the domain.

The goal of the control approach is, given some (constant) reference
temperature Tr and some varying Tinf (t), adjust the value of g such

that the value of temperature at the point p (upper-right corner) Tp
approaches Tr. The practical motivation of the problem is to maintain the
top boundary (y = Ly) close to the reference temperature Tr.

The initial condition for the problem is:

T

Tinitial, 0 < x < Lx, 0 <y < Ly, t =0

State-Space representation of the dynamic system:

dT/dt = A*T + B*u Lo (D)
y = C*T Lo (2)
u = K*(r - vy) <o (3)

T: temperature of nodal values of temperature
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A: system matrix
B: input matrix
y: output vector, y = [Tp; 0]
C: output matrix, C = [delta(ip, Jjp)], ip, Jjp: node number of p
u: control vector, u = [g; Tinf]
K: gain matrix, K = [kg 0; 0 1], (g = kg*(Tr - Tp))
r: reference vector, r = [Tr; Tinf]
Solution:
T"(n+l) = (I - dt* (A - B*K*C))\(T"n + dt*B*K*r )
Finite Difference Method (FDM) approximation:
Physical domain:
Yy
\
(0, Ly) | (top) (Lx, Ly)
O———————m e — e ——— o P <-- location of thermocouple
\ \
\ \
\ \
\ \
\ \
\ \
(left) | | (right)
\ \__ (radius R) \
\ \_ \
\ \_ \
| conductor \ |
\ \ \
O———————m o ————> X
(0, 0) (bottom) (Lx, 0)
Index domain:
(1, 1) (bottom) (1, Nx)
O— === = o —=——-= > J (equivalent to x axis)
\ \
\ \
\ \
\ i-1,3 |
\ \ \
(left) | i,73-1 i,3 i,j+1 | (right)
\ \ \
\ i+1,73 \
\ \
\ \
\ \
O— ==~ o
(Ny, 1) | (top) (Ny, Nx)

i (equivalent to y axis)

BOUNDARY CONDITIONS

The boundary conditions are as follows for each edge:
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% Bottom: k * dT/dx = 0
$ Left: -k * dT/dx = 0
% Top: k * dT/dy = h* (T -Tinf(t))
% Right: -k * dT/dy = h* (T -Tinf (t))

o\

o\

Essentially, this means there is no heat transfer at the bottom and left
boundaries but there is convective heat transfer at the top and right
boundaries. This is consistent with the requirements of the analysis.

o\

o

% BEGINNING OF CODE === —— oo o o -
clear; close all

% Specify which nodes are of interest
Px = 13;
Py = 13;

% Control parameters
r = 20;
kg = 1.8e4;

=

o

[C] reference temperature (20)
[J/m"3/K] control parameter (1.8e4)

o

% Spatial domain

Lx = 0.020; % [m] length of domain along x
Ly = 0.010; % [m] length of domain along y
R = 0.005; % [m] radius

Nx = 51; % number of nodes along x (101, 51)
Ny = 25; % number of nodes along y (50, 25)

% Temporal domain
tfinal = le2;
Nt 100;

o

[s] final time (le2)
number of temporal nodes (100)

oe

[

% Properties:

rhoCp = 2e3; % [J/m"3/K] volumetric heat capacity
k =1.0; % [W/m/K] thermal conductivity
h = 10.0; % [W/m"~2/K] convective coefficient

[

% Initial conditions
Tinitial = 10; % [C] initial temperature

% Function describing the time dependency of external temperature

funTinf = @( t ) ( 10 + 10 * sin( 9 * pi * t / tfinal ) +
7 * sin(22 * pi * t / tfinal ) +
5 * sin( 7 * pi * t / tfinal ) );

Q

% Convert specified matrix position to an index
Pnode = Nx * ( Py - 1 ) + Px;
Ctx.node = Pnode;

% Store all constants
Ctx.rhoCp = rhoCp;

Ctx.k = k;
Ctx.h = h ;
Ctx.Tr = Tr;
Ctx.kg = kg;
Ctx.Lx = Lx;
Ctx.Ly = Ly;

Ctx.R = R ;



% Calculate solver parameters & properties
N = Nx * Ny; $ total number of unknowns (nodes)

dx = Lx / ( Nx - 1 );
x =0 : dx : Lx;

o

discrete x differential
discrete x axis, x(1) = 0, x(Nx) = Lx

o

o

dy =Ly / ( Ny - 1);
% 0 : dy : Ly;

discrete y differential
discrete y axis, y(1) = 0, y(Ny) = Ly

oo

dt = tfinal / ( Nt - 1 );
t =0 : dt : tfinal;
tcoord = t;

o°

discrete t differential
discrete t axis, t(l) = 0, t(Nt)

o

tfinal

o

Preallocate space and define identity matrix

T = zeros( N, Nt ); % solution for each time interval
I = speye( N, N ); % identity matrix

Calculate the system matrices for the given constants
A, B, C, K] = funSys(Ctx);

— 0P

% Populate T with the initial conditions
T(:, 1) = Tinitial;

% SOLUTTON = == = o e

for n =1 : Nt-1

oe

Populate element of linear system
= [ Tr; funTinf( t( n ) ) 1;

-

% Solve linear system
(:, n+ 1) = (I -dt * (
(T( :p, n) +dt * (B *

=

*

A-B*K=*C) )\
K r) );

end

$ COLLECT DATA FROM SPECIFIC TIMES —=———=-—=——-—————— oo oo

% Set of instants as percentage of total time

ntl = 2; % ~ 0%, initial
nt2 = round( 0.20 * Nt ); % 20%
nt3 = round( 0.50 * Nt ); % 50%

nt4 = Nt;

o\°

100%, final

% Create x-y grid
[ Xgrid, Ygrid ] = meshgrid( x, y );
% Arrange solution into x-y grid

Tgridl = zeros( Ny, Nx

I

)
Tgrid2 = zeros( Ny, Nx );
Tgrid3 = zeros( Ny, Nx );
Tgrid4 = zeros( Ny, Nx );

for i =1 : Ny
for j =1 : Nx
node = Nx * (i - 1) + j;
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en
end

% PLOT
% Surf
figure
subplo

view (

axis image

colorb
xlabel
ylabel
zlabel
title(

subplo

view (

axis image

colorb
xlabel
ylabel
zlabel
title(

subplo

view (

axis image

colorb
xlabel
ylabel
zlabel
title(

subplo

view (

axis image

colorb
xlabel
ylabel
zlabel
title(
% Temp
figure

subplo
plot(
t,

node,
node,
node,
node,

)

)

0.2t {final} ) ")

0.5t {final} ) ")

)

)

")

Tgridl( i, 3 ) = T(
Tgrid2( i, 3 ) = T(
Tgrid3( i, 7 ) = T(
Tgridd ( i, 37 ) = T(
d
TING
ace plots
t(2, 2, 1)
surfc( Xgrid, Ygrid, Tgridl
2)
ar
(" x [m] ")
("'y [ml ")
(" T [C] ")
"' T( x, y, ~t {initial}) ")
t( 2, 2, 2)
surfc( Xgrid, Ygrid, Tgrid2
2)
ar
(" x [m] ")
("'y [ml ")
(" T [C] ")
'T( %, Y,
t( 2, 2, 3)
surfc( Xgrid, Ygrid, Tgrid3 )
2)
ar
(" x [m] ");
("y [ml ");
(" T [C] ")
'T( %X, Y,
t(2, 2, 4)
surfc( Xgrid, Ygrid, Tgrid4
2)
ar
(" x [m] ")
(" y [m] ")
(" T [Cc1 ")
"' T( x, y, t {final}
oral plots
t(2, 1, 1)
t, T( N, ), '-b',
funTinf( t ), '--r',
Tr * ones( 1, Nt ),

t,

ntl
nt2

nt4
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legend('T p', 'T_{\infty}', 'T r' )

xlabel (' t [s] ")

ylabel (' T [C] ")

title(' Thermocouple Temperature, T p( t ) ')

subplot( 2, 1, 2 )

plot( t, kg * ( Tr -= T( N, : ) ) )
xlabel (' t [s] ")

ylabel (' g [J/m"3] ")

title(' Heat Generation, g( t ) ")

o\

EXPORT BOUNDARY DATA === = m o oo oo o

o

First, lets consider the topmost boundary (the orignal convection
condition)

o

Ttop = zeros (Ny,tfinal);
for t = 1:tfinal
for i = Ny
for j = 1:Nx
nodes = Nx * (i - 1) + 7;
Ttop(j,t) = T(nodes,t);
end
end
end

% Second, lets consider the rightmost boundary (the second convection
$ condition)
Tright = zeros(Ny,tfinal);
for t = l:tfinal
for i = 1:Ny
for j = Nx
nodes = Nx * (i - 1) + 7;
Tright (i, t) = T(nodes,t);
end
end
end

% Plot the temperature distributions at the boundaries as a function of
% time

figure

surf (tcoord, x, Ttop)

title ('Topmost Boundary Temperature Distribution over Time')

xlabel ('Time [s]'")

ylabel ('Distance [m]")

zlabel ('Temperature (C)")

figure

surf (tcoord, y, Tright)

title ('Rightmost Boundary Temperature Distribution over Time')
xlabel ('Time [s]"')

ylabel ('Distance [m]")

zlabel ('Temperature (C)")

toc

% NESTED FUNCTION DEFINING MATRICES ———————————m oo
function [A, B, C, K] = funSys(Ctx)
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% RETRIEVE CONSTANTS === = — o oo o o o o o

rhoCp = Ctx.rhoCp;
k = Ctx.k;
h = Ctx.h ;
kg = Ctx.kg;
Lx = Ctx.Lx;
Ly = Ctx.Ly;
R = Ctx.R ;
Nx = Ctx.Nx;
Ny = Ctx.Ny;
Nx = Ctx.Nx;
Ny = Ctx.Ny;

% INITIALLZATIONS === - o o o o o

dx =1Lx / ( Nx - 1); % differential - x

dy =Ly / ( Ny - 1); % differential - y

X =0 : dx : Lx; % discrete x axis, x(1) = 0, x(Nx) = Lx
y =0 : dy : Ly; % discrete y axis, y(1l) = 0, y(Ny) = Ly
N = Nx * Ny; % total number of unknowns (nodes)

vlin = 1.0e8; % very large number

A = sparse( 1, 1, 1, N, N, 5 * N ); % sparse linear system matrix
B = sparse( N, 2 ); % input matrix

% € MATRIX == m—m o o o o

C = sparse (2, N); % output matrix

C(l, Ctx.node) = 1; % Specify which node to consider

% GAIN MATRIX ————————————mmm—m
K=1[kg 0.0 ; % gain matrix

0.0 1.0 17

oe

BOUNDARY CONDITIONS === === — - m oo o o o o

% For the left boundary

j =1
for i =1 : Ny
node = Nx* (i-1)+73;

nodeb = node + 1;
A (node, node) vin* (-k/dx) ;
A (node, nodeb) = vin*(k/dx);

% For the right boundary

J

for i =1 : Ny

= Nx*(i-1)+7;
nodeb = node - 1;

o]

O

Q.

)
|

% Can verify this with Professor Trelles' code by uncommeting this line
% and commenting out the B(node, 2) line

%A (node, node) = vln* (-k/dx-h);
A (node, node) = vln* (-k/dx-h);
A (node, nodeb) = vln*(k/dx);
B(node, 2) = vln* (h);

end



% Fo
i =
for

end

% Co
Clef
Crig
Cbot
Ctop
Ccen

for

end
end

r the bottom boundary

1;

J =2 : Nx-1

node Nx* (i-1)+7;

nodeb = node+Nx;

A ( node,node) = vin* (-k/dy);
A ( node, nodeb) vin* (k/dy) ;

r the top boundary

Ny;

J =2 : Nx-1

node = Nx*(i-1)+7j;

nodeb = node - Nx;

A( node, node) = vln*(-k/dy-h);
A( node, nodeb) = vln* (k/dy);

B( node, 2) = vin* (h);

nsidering internal nodes

t = k / rhoCp / dx"2;
ht k / rhoCp / dx"2;
tom = k / rhoCp / dy*2;
= k / rhoCp / dy"2;
ter = -k / rhoCp * ( 2.0 / dx"2 + 2.0 / dy"2 );

i =2 : Ny-1
for j = 2 : Nx-1

% current node:
node = Nx * (i -1) + 3j;

% elements of B:

if sgrt( x( jJ )2 + y( i )72 ) <= R

B( node, 1 ) = 1.0 / rhoCp;
end
% elements of A:
node left = node - 1; % ( 1 , J -1
node right = node + 1; % ( 1 , J + 1
node bottom = node - Nx; % (1 - 1, J
node_ top = node + Nx; % (1 + 1, J
node center = node ;0% (1 ;]
A( node, node_ left )y = Cleft ;
A( node, node right ) = Cright ;
A( node, node bottom ) = Cbottom;
A( node, node_ top ) = Ctop ;
A( node, node center ) = Ccenter;

end
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A.3 — Mean Deviation Calculator for a Given Thermocouple Position
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Mean Deviation Calculator for a Given Thermocouple Position

MECH.5410 - Advanced Heat Transfer
Project 3

Nicholas McLaughlin

11/9/2020

NO T E == —— o m oo oo
This code is a modification of Professor Juan Pablo Trelles' 2020 code
"heatplate feedcontrol.m". Slight modifications have been made, such as
adding the mean deviation functionality, but the core functionality is
Professor Trelles' work.

PURPOSE == === = mm —mm o o
This code evaluates the statistical variability of the temperature with
respect to a prescribed reference temperature. This is with respect to
the problem description in Project 3. This is measured using the mean
deviation (MD)

CODE DESCRIPTION === === == e e e e e e e e e e e e e e e e e e e e e m e
This particular code defines as the callable function Mean Deviation in the
following structure:

[zavg, ztop, zright, avgtop,avgright, sigtop, sigright, TimeEnd] =
Mean Deviation (Px, Py, Lx,Ly,Nx,Ny, kg)

TN PU TS — = ———m oo o -
Px: Node position in the x direction

Py: Node position in the y direction

Lx: Total length in the x direction

Ly: Total length in the y direction

Nx: Number of nodes in the x direction

Ny: Number of nodes in the y direction

kg: Heat generation gain constant

OUTPUTS ——————————————————m—mm——m

zavg : the average MD of the top and right boundaries for the
time interval

ztop : the MD of the top boundary over the time interval

zright : the MD of the right boundary over the time interval

avgtop : the average temperature of the top boundary over the time
interval

avgright : the average temperature of the right boundary over the time
interval

sigtop : the standard deviation of the temperature at the top boundary

sigright : the standard deviation of the temperature at the right boundary

TimeEnd : the time it took for the code to finish

MODEL DESCRIPTION= === === === — o o — o o o o o
NOTE: This section is taken from Professor Trelles' code since it is
nearly identical in functionality:

Feedback control of a flat plate with a heating element.
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The temperature distribution T(x,y, t)
with volumetric heat capacity rhoCp,

size Lx x Ly,

through a rectangular domain of
thermal conductivity

k, and volumetric heat generation g is described by:

rhoCo * dT/dt =

The term g( t )

control parameter,

The goal of the control approach is,
temperature Tr and some varying Tinf (t),
that the value of temperature at the point p
The practical motivation of the problem is to maintain the
close to the reference temperature Tr.

aproaches Tr.
top boundary (y

The initial condition for the problem is:

T =

k * d*"2T/dx"2 + k * d"2T/dy"2 + g

is positive only within the conductor region - the

T

Ly)

initial,

0 < x < Lx,

given some

(constant)
adjust the value of g such
(upper-right corder)

and zero elsewhere in the domain.

reference

0 <y < Ly,

State-Space representation of the dynamic system:

dT/dt = A*T + B*u (1)

y = C*T (2)

u = K*(r - vy) (3)
T: temperature of nodal values of temperature
A: system matrix
B: input matrix
y: output vector, y = [Tp; 0]
C: output matrix, C = [delta(ip, Jjp)]1, ip, Jp:
u: control vector, u = [g; Tinf]
K: gain matrix, K= [kg 0; 0 1], (g =
r: reference vector, r = [Tr; Tinf]
Solution:
T"(n+l) = (I - dt*(A - B*K*C))\(T"n + dt*B*K*r )

Finite Difference Method

Physical domain

A\

(radius R)

\

conductor \

(FDM)

approximation:

(Lx, Ly)

|
|
|
|
|
\
| (right)
|
|
\
|
\

t =20

node number of p

kg* (Tr - Tp))

o P <-- location of thermocouple
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|
|
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|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
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|
|
|
|
|
@]
|
|
|
|
\
b

% (0, 0) (bottom) (Lx, 0)
% Index domain:

s (1, 1) (bottom) (1, Nx)

% O—— === — o ———-= > j (equivalent to x axis)
% \ \

% \ \

% \

% ‘ l_llj I

% \ \ l

% (left) | i,3-1 - i,3 i,j+1 | (right)
% \ \ \

% | i+1,7 |

% \

% \

% \ \

% O—————m o

5 (Ny,1) | (top) (Ny, Nx)

% \

% i (equivalent to y axis)

o

BOUNDARY CONDITIONS — === === e e e o
The boundary conditions are as follows for each edge:

o

o

% Bottom: k * dT/dx = 0
$ Left: -k * dT/dx = 0
% Top: k * dT/dy = h* (T -Tinf (t))
% Right: -k * dT/dy = h* (T -Tinf(t))

o

o

Essentially, this means there is no heat transfer at the bottom and left
boundaries but there is convective heat transfer at the top and right
boundaries. This is consistent with the requirements of the analysis.

oe

oe

\o

%5 BEGINNING OF CODE ————— - oo
function [Zavg,Ztop,Zright,avgtop,avgright,sigtop,sigright, TimeEnd] =
Mean Deviation (Px, Py, Lx, Ly,Nx, Ny, kg)

% Begin timer
TimeStart = tic;

% Control parameters:
Tr = 20; $ [C] reference temperature (20)

% Solver parameters

Nt = 100; % number of temporal nodes (100)
tfinal = le2; S [s] final time (le2)

% Properties:

R 0.005; S [m] radius

rhoCp = 2e3; % [J/m"3/K] volumetric heat capacity
k =1.0; % [W/m/K] thermal conductivity

h = 10.0; % [W/m"~2/K] convective coefficient
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% Initial condition:
Tinitial = 10; S [C]

[

initial temperature

funTinf = @( t )( 10 + 10 * sin( 9 * pi * t / tfinal +
7 * sin(22 * pi * t / tfinal
5 * sin( 7 * pi * t / tfinal
% Convert specified matrix position to an index
Pnode = Nx * ( Py - 1 ) + Px;
Ctx.node = Pnode;
% Store all constants
Ctx.rhoCp = rhoCp;
Ctx.k =k ;
Ctx.h =h ;
Ctx.Tr = Tr;
Ctx.kg = kg;
Ctx.Lx = Lx;
Ctx.Ly = Ly;
Ctx.R = R ;
Ctx.Nx = Nx;
Ctx.Ny = Ny;
% Calculate solver parameters & properties
N = Nx * Ny; $ total number of unknowns (nodes)
dx = Lx / ( Nx - 1 ); % discrete x differential
x =0 dx Lx; % discrete axis, x(1) = 0, x(Nx)
dy = Ly / ( Ny - 1 ); % discrete differential
y =0 : dy Ly; % discrete axis, y(l) = 0, y(Ny)
dt = tfinal / ( Nt - 1 ); % discrete differential
t =0 : dt tfinal; % discrete t axis, 0, t(Nt)
% Preallocate space and define identity matrix
T zeros( N, Nt ); % solution for each time interval
I = speye( N, N ); % identity matrix

— o°

A, B, C, K] = funSys(Ctx);

% Populate T with the initial conditions
(:, 1) = Tinitial;

H

o
°
o
°

Solution over the time interval
for n = 1:(Nt-1)

o

Populate elements of the linear system
= [ Tr; funTinf( t( n ) ) 1;

-

o

Solve the linear system

Calculate the system matrices for the given constants

% Function describing the time dependency of external temperature

Lx

Ly

tfinal

SOLUTTON === = = = e
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T(:, n+l) = (I - dt* (A - B*K*C))\(T(:, n) + dt*(B*K*r)):;
end

% COLLECT BOUNDARY DATA === = oo o o
% Preallocate space for Ttop and Tright

Ttop = zeros (Ny,tfinal);

Tright = zeros(Ny,tfinal);

% Consider the top boundary temperature in time
for t = 1:tfinal

for i = Ny
for j = 1l:Nx
nodes = Nx * (i - 1) + j;
Ttop(j,t) = T(nodes,t);
end
end

end

[

% Perform statistical calculations on the top boundary data

sigtop = std2 (Ttop):; % Standard deviation
avgtop = mean (Ttop, 'all'); % Average temperature
[m,n] = size(Ttop);

N = m*n;

Ztop = (1/N)* (sum(abs(Ttop - Tr), 'all')); % MD Top

[

% Consider the right boundary temperature in time
for t = 1l:tfinal
for i = 1:Ny
for j = Nx
nodes = Nx * (i - 1) + j;
Tright (i, t) = T(nodes,t);
end
end
end

% Perform statistical calculations on the right boundary date
sigright = std2 (Tright); Standard deviation
avgright = mean(Tright, 'all'); Average temperature

o\°

o\°

[m,n] = size(Tright);
N = m*n;
Zright = (1/N)* (sum(abs(Tright - Tr), 'all')); % MD Right

Q

% Consider the average MD for both the top and right boundaries
Zavg = mean ([Zright Ztopl);

Q

% Store the time required to solve
TimeEnd = toc(TimeStart) ;

end

% NESTED FUNCTION DEFINING MATRICES ———————— - m oo
function [A, B, C, K] = funSys(Ctx)

% RETRIEVE CONSTANTS === === = oo oo
rhoCp = Ctx.rhoCp;
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k = Ctx.k;

h = Ctx.h ;
kg = Ctx.kg;
Lx = Ctx.Lx;
Ly = Ctx.Ly;
R = Ctx.R ;
Nx = Ctx.Nx;
Ny = Ctx.Ny;
Nx = Ctx.Nx;
Ny = Ctx.Ny;

% INITIALLZATIONS === o o o o o

dx =ILx / ( Nx - 1 ); % differential - x

dy =Ly / ( Ny - 1 ); % differential - vy

X =0 : dx : Lx; % discrete x axis, x(1) = 0, x(Nx) = Lx
y =0 : dy : Ly; % discrete y axis, y(1) = 0, y(Ny) = Ly
N = Nx * Ny; % total number of unknowns (nodes)

vin = 1.0e8; % very large number

A = sparse( 1, 1, 1, N, N, 5 * N ); % sparse linear system matrix
B = sparse( N, 2 ); % input matrix

S C MATRIX === ——m o o oo o
C = sparse (2, N); % output matrix

C(l, Ctx.node) = 1; % Specify which node to consider

oe

GAIN MATRIX —————mm e e
= [ kg 0.0 ; % gain matrix
0.0 1.0 1;

=

oe

BOUNDARY CONDITIONS === === — - m oo o o o o

For the left boundary
j = 1;

for i =1 : Ny

node = Nx*(i-1)+7;
nodeb = node + 1;

A (node, node)
A (node, nodeb)

- oo

vin* (-k/dx) ;
vin* (k/dx) ;

% For the right boundary

J = Nx;
for i = 1 : Ny
node = Nx* (i-1)+7;
nodeb = node - 1;
A (node, node) = vln* (-k/dx-h);
A (node, nodeb) = vln*(k/dx);
B (node, 2) = vln* (h);
end
% For the bottom boundary
i=1;

for j = 2 : Nx-1
node = Nx* (i-1)+7;



nodeb = node+Nx;

A ( node,node)

A ( node,nodeb)
end

% For the top boundary

i = Ny;
for j = 2 : Nx-1
node = Nx* (i-1)+7;

nodeb = node - Nx;

= viln* (-k/dy) ;
vin* (k/dy) ;

A( node, node) = vln*(-k/dy-h);

A ( node, nodeb)
B( node, 2)
end

[

% Considering internal nodes

Cleft = k / rhoCp / dx"2;
Cright k / rhoCp / dx"2;
Cbottom = k / rhoCp / dy”2;
Ctop = k / rhoCp / dy"2;
Ccenter = -k /

for i = 2 : Ny-1
for 3 = 2 : Nx-1
% current node:
node = Nx * (1 - 1)

% elements of B:

if sgqrt( x( j )2 + vy
B( node, 1 ) = 1.

end

o)

% elements of A:

node left = node -
node right = node +
node bottom = node -
node_ top = node +

node center = node

A( node, node_ left
A( node, node right
A( node, node bottom
A( node, node_ top
A( node, node_ center
end
end
end

’

vin* (k/dy) ;
vin* (h);

(1
/

1;

Nx;

—_— — — — —

)2 ) <=

rhoCp;

o\°

o\°

oe

oe

e R S A =
[

o\°

Cleft ;
Cright ;
Cbottom;
Ctop ;
Ccenter;

=

~

R

~

~

~

[

rhoCp * ( 2.0 / dx*2 + 2.0 / dy*2 );
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A.4 — Discrete Optimization for Mean deviation Calculator
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Discrete Optimization for Mean Deviation.m

MECH.5410 - Advanced Heat Transfer
Project 3

Nicholas McLaughlin

11/9/2020

PURPOSE ————————m—mmm
This code evaluates the function Mean Deviation.m over a variety of
thermocouple positions. The ambition is to determine which point will
result in the greatest minimization of variability for the top and right
boundaries.

CODE DESCRIPTION === === m o m o oo e e
This code makes use of a simple iterative optimization algorithm for
discrete systems. This algorithm was created and designed by the author.
Functionally, it considers the discretized 2D domain and divides it into
3x3 squares (i.e., a 27 x 9 matrix would have 9x3 squares). In the center
of each square, the middle position is computed in Mean Devaiation.m to
get a reference as to the variance magnitude in that vicinity.

After all the centers of each square has been evaluated, the code
investigates the smallest variance. At this point, the entire 3x3 square
is investigated. It is assumed that the minimum value is located within
this square.

Note, there are some portions of the domain that are not considered. For
example, if the x-domain is discretized into 28 points, only the last 27
will be considered. This is not a major concern because the purpose of
this code is to generate a general idea of where the minimum variance is.
The actual minimum can then be extrapolated and evaluated by hand.

Following these calculations, the distribution of variance as a function
of position is plotted. The variances for the top, right, and average are
all plotted.

This function also loops over a selection of k g values. The data
obtained is saved automatically such that it can be processed later.
Note, this process takes quite a while. In its current configuration, it
must compute 720 total calculations at ~5 seconds each. This ends up
being a whole hour of computation time.

MODEL DESCRIPTION-—-———————————— - mm mm o — — m
NOTE: This section is taken from Professor Trelles' code since it is
nearly identical in functionality:

Feedback control of a flat plate with a heating element.

The temperature distribution T(x,y, t) through a rectangular domain of
size Lx x Ly, with volumetric heat capacity rhoCp, thermal conductivity
k, and volumetric heat generation g is described by:

rhoCo * dT/dt = k * d"2T/dx"2 + k * d"2T/dy"2 + g

The term g( t ) is positive only within the conductor region - the
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control parameter, and zero elsewhere in the domain.

The goal of the control approach is, given some (constant) reference
temperature Tr and some varying Tinf (t), adjust the value of g such

that the value of temperature at the point p (upper-right corner) Tp
approaches Tr. The practical motivation of the problem is to maintain the
top boundary (y = Ly) close to the reference temperature Tr.

The initial condition for the problem is:

T = Tinitial, 0 < x < Lx, 0 <y < Ly, t =0

State-Space representation of the dynamic system:

dT/dt = A*T + B*u ... (1)

\% = C*T ... (2)

u = K*(r - vy) ... (3)
T: temperature of nodal values of temperature
A: system matrix
B: input matrix
y: output vector, y = [Tp; 0]
C: output matrix, CcC = [delta ip, jp) ], ip, Jp: node number of p
u: control vector, u = [g; Tinf]
K: gain matrix, K = [kg 0; 0 11, (g = kg*(Tr - Tp))
r: reference vector, r = [Tr; Tinf]
Solution:
T (n+l) = (I - dt*(A - B*K*C))\(T"n + dt*B*K*r )

Finite Difference Method (FDM) approximation:
Physical domain:

(0, Ly) | (top) (Lx, Ly)
O-—————TT T T oo 0 P <-- location of thermocouple

\
\
\
|
\
\
| (right)
\
|
\
|
\

(left)
\_ (radius R)
\_
\_
conductor \
\
O————— o ————> X
(0, 0) (bottom) (Lx, 0)
Index domain
(1, 1) (bottom) (1, Nx)
O o —==-- > j (equivalent to x axis)
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% i+1,3

% O————— T m e m oo o

5 (Ny,1) | (top) (Ny, Nx)
% \

% i (equivalent to y axis)

o

BOUNDARY CONDITTIONS === === == m o oo o e
The boundary conditions are as follows for each edge:

o

o

% Bottom: k * dT/dx = 0
% Left: -k * dT/dx = 0
% Top: k * dT/dy = h* (T -Tinf(t))
$ Right: -k * dT/dy = h* (T -Tinf(t))

o

o

Essentially, this means there is no heat transfer at the bottom and left
boundaries but there is convective heat transfer at the top and right
boundaries. This is consistent with the requirements of the analysis.

o

o

% BEGINNING OF CODE —————mm oo oo -
clear
close all

% Define k g values to be considered throughout the loop
BIGG = [1l.4e4 1.6e4 1.8e4 2.0e4 2.2e4];
KG = string(BIGG) ;

% BEGINNING OF LOOP === m = oo o e e e
for w = 1:5
kg = BIGG(w) ;

Lx = 0.020; % [m] length of domain along x
Ly = 0.010; % [m] length of domain along y
tfinal = le2; S [s] final time (le2)

Nx = 51; % number of nodes along x (101, 51)
Ny = 25; % number of nodes along y (50, 25)

x = linspace (0,Lx,Nx);

y = linspace(0,Ly,Ny);

o)

% Specify Search Domain

xd = [0.0 0.027]; % Make sure that x(2) = Lx in Mean Deviation.m
yd = [0.0 0.01]; % Make sure that y(2) = Ly in Mean Deviation.m

$ INITIAL CALCULATIONS —————————m oo o oo
% Determine the size of x and y
[~,xn] = size(x);
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5
% seconds was the average time of computation, if it varies on a
different

>

°

SCAN DOMAIN

[~,yn] = size(y);

% Calculate which matrix position corresponds with the cartesian

% coordinate specified
x1ld = round (Nx* (xd (1) /Lx));
yld = round (Ny* (yd (1) /Ly));

% Create preallocated matrices for faster computation
T = zeros (Nx,Ny);

zavg = zeros (Nx,Ny) ;

ztop = zeros (Nx,Ny) ;

zright = zeros (Nx,Ny);

avgtop = zeros (Nx,Ny) ;

avgright = zeros (Nx,Ny);

sigtop = zeros (Nx,Ny);

sigright = zeros (Nx,Ny);

TimeEnd = zeros (Nx,Ny);

% Calculate how many 3x3 squares are within the matrix
xsquares = round ( (Nx-x1d)/3);

ysquares = round( (Ny-yld)/3);

% NOTIFICATION === oo oo o -
% Write to the screen the estimated calculations and time of completion

Computations = xsquares*ysquares + 8;

write = sprintf('Total Number of Computations: %.0f \n',Computations);

fprintf (write);

% This estimated time is based on the computer used to develop this code.

% PC, please update the coefficient below accordingly
EstTime = Computations*5;

write = sprintf('Estimated time: %.0f [s]\n',EstTime);
fprintf (write);

EstTime = EstTime/60;

write = sprintf('Estimated time: %.0f [min]\n',EstTime);
fprintf (write);

% Preallocate matricies for storing the scanned data
zIndex = zeros (xsquares,ysquares) ;

zIndexTop = zIndex;

zIndexRight = zIndex;

% Loop to scan for the data within the domain

for i = l:xsquares
for j = l:ysquares
% Start timer
tic

% Convert square indicies to the matrix discretization
xi = Nx - (3*1i - 2);
vi =Ny - (3*3 - 2);
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% Mean Deviation solver

[zavg(xi,yi),ztop(xi,yi),zright (xi,vyi),avgtop(xi,yi), ...
avgright (xi, yi),sigtop(xi,yi),sigright(xi,yi), ...
TimeEnd(xi,yi)] = Mean Deviation (xi,yi,Lx,Ly,Nx,Ny, kg);

[

% Save data from the solution outside of the loop

zIndex (i,]) = zavg(xi,yi);
zIndexTop(i,]) = ztop(xi,vyi);
zIndexRight (i, j) = zright(xi,vyi);

% Stop timer & display time. This is primarily used to ensure the

% code 1s operating
toc
end
end

% Find where the lowest mean deviation is in the resulting matrix
[M,I] = min(zIndex(:));
[I row, I col] = ind2sub(size(zIndex),I);

% Specify the what points in the zavg matrix will have the lowest mean
% deviation

Px = Nx - (3*I row - 2);

Py = Ny - (3*I col - 2);

% FURTHER INVESTIGATION === === — o m o oo oo

[

% Notify user the initial scan is complete
disp('Located area to investigate further')
load gong

sound (y, Fs)

% Second loop to calculate the 9 points around (and including) the
% smallest value found from the scan

for 1 = (Px-1): (Px+1)
for 3 = (Py-1): (Py+1)
% Start timer
tic
% Update the exisiting matrices with the solutions for the
specific
% points
[zavg(i,]),ztop(i,]),zright(i,]),avgtop(i,J), ...
avgright (i, j),sigtop(i,j),sigright(i,j), ...
TimeEnd(i,J)] = Mean Deviation (i, Jj,Lx,Ly,Nx,Ny,kqg);
% Stop timer & display time. This is primarily used to ensure the
% code 1is operating
toc
end
end
filename = strcat ('KG',KG(w),'.mat");

end

save (filename) ;
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A.5 — Data Analysis

Analysis of Data from Iterative Method.m

o° oo

o

MECH.5410 - Advanced Heat Transfer
Project 3

Nicholas McLaughlin

11/9/2020

o° oo

o\

o\

PURPOSE - === ===——— === —— - m ——m
This code processes the immense amount of data from Iterative Method.m.
The reason these commands are not integrated into the code initially is
due to the changing asthetic and numerical requirements for considering
the data. Instead of waiting for ~80 minutes of code processing, this
code can analyze all the data generated in under 5 seconds.

o° d° o oe

o

o

CODE DESCRIPTION ————— - m o mmmm o o o
This series of code loads the workspaces saved after each run of
Iterative Method.m for different values of k g. There are several results
desired from this processing:

1. Find the mean deviation at 6 points

2. Find where the minimum mean deviation is in the matrix z avg

3. Plot the mean deviation surface as a function of thermocouple

o° d° P oe oe

o

% position

% a.) For the average mean deviation

% b.) For the top boundary mean deviation

% c.) For the right boundary mean deviation

oe

4. Plot the mean deviation of the 6 points as a function of k g

oe

o

Necessarily, this code is repetitive. Since there will be 5 sections of

code that are nearly identical, only the first section will be annotated
with detail. The same annotations apply equally well to the subsequent 4
sections.

o o° o° o°

o

The 6 points being considered are drawn below

o

o

d° P o° oP° oe

o©

o o° o° o oo

o©
s

o\°

% BEGIN CODE ———————m——m o oo oo oo -
clear
close all



% Preallocate the matrix z to store the MD values for the 6 points
MD = zeros(6,5);

% Create the k g vector used to order each data set
g = [1.4e4 1.6e4 1.8e4 2.0e4d 2.2e4];

% LOAD FIRST DATA SET —— - = m oo oo oo o

load ('KG14000.mat")

% Measure the size of the matrix zIndex
[m,n] = size(zIndex);

% Extract the mean deviation for each of the 6 points

MD(1,1) = zIndex(end, end); % Lower left corner
MD(2,1) = zIndex(end,1l) % Upper left corner
MD(3,1) = zIndex(1l,1); % Upper right corner
MD(4,1) = zIndex(round(O 25*m) , round (0.5*n) ) ; % Middle-right
MD(5,1) = zIndex (end, round(O.S*n)); % Middle right edge
MD(6,1) = zIndex(1l,end) % Lower right corner

o

Search through the zavg matrix and change all the zero elements to 10
This 1is necessary because we want to know what the minimum value is of
the data collected - and we purposefully did not fill the zeros matrix

o

o

% initially
[m,n] = size(zavqg);
for i = 1:m
for 3 = 1:n
if zavg(i,j) == 0
zavg (i,j) = 10;
end
end
end
$ Find where the minimum mean deviation value is
[~,I] = min(zavg(:));
[I row, I col] = ind2sub(size(zavg),I);

o)

% Conver the columns and rows into the physical distances
xdist = (I_row/Nx)*Lx;
ydist = (I _col/Ny)*Ly;

% Display the results to screen
write = 'Minimum for k g = 1.4e4 \n x =
fprintf (write,xdist,ydist)

[m] \n \n'

oe
(o)}
h
3
=
Il
oe
(o)}
h

% Create indicies for plotting
i = l:xsquares;

J = l:ysquares;

x1i = (Nx - (3*i - 2))*(Lx/Nx)
yli = (Ny - (3*] - 2))*(Ly/Ny);

% Plot the mean mean deviation as a function of thermocouple position
figure

surf (yi,xi, zIndex);

xlabel ('y-Dimension [m]")
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ylabel ("x-Dimension [m]")

zlabel ('Mean Deviation [°C]")

title({' Mean Deviation vs Thermocouple Position'
' (kg =1.40 x 1074) '})

view (138,-27)

daspect ([1 1 200])

[

% Plot the top mean deviation as a function of thermocouple position
figure
surf (yi,xi, zIndexTop)
xlabel ('y-Dimension [m]")
ylabel ('x-Dimension [m]")
zlabel ('Mean Deviation [°C]")
title({' Mean Deviation vs Thermocouple Position (Top Edge)', ...
"' (kg =1.40 x 107%4) '})
view (138,-27)
daspect ([1 1 20017)

o)

% Plot the right mean deviation as a function of thermocouple position
figure
surf (yi,xi, zIndexRight)
xlabel ('y-Dimension [m]")
ylabel ('x-Dimension [m]")
zlabel ('Mean Deviation [°C]")
title({' Mean Deviation vs Thermocouple Position (Right Edge)', ...
"' (kg =1.40 x 1074) '})
view (138,-27)
daspect ([1 1 20017)

% LOAD SECOND DATA SET === - == - —mm o m oo oo

% See data set 1 for detailed explanation of code
load ('KG16000.mat")
[

m,n] = size(zIndex);
MD(1,2) = zIndex(end,end);
MD(2,2) = zIndex(end,1);
MD(3,2) = zIndex(1l,1);
MD(4,2) = zIndex(round(O 25*m) , round (0.5*n) ) ;
MD(5,2) = zIndex(end,round(0.5%*n));
MD(6,2) = zIndex(l,end);
[m,n] = size(zavg);
for i = 1:m
for 3 = 1:n
if zavg(i,j) == 0
zavg (i,J) = 10;
end
end
end

o

Create indicies for plotting

i = l:xsquares;
j = l:ysquares;
x1i = (Nx - (3*1 - 2))*(Lx/Nx);
yi = (Ny - (3*] - 2))*(Ly/Ny);
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[NI I] =
[I_row,
write
xdist
ydist =
fprintf (

figure

surf (yi,
xlabel ('
ylabel ('
zlabel (
title ({'

min(zavg(:));

I col] = ind2sub(size(zavg),I);
'Minimum for k g = 1.6e4 \n x = $.6f [m] y = $.6f [m] \n \n'
(I row/Nx) *Lx;

(I_col/Ny)*Ly;

write,xdist,ydist)

xi,zIndex) ;
y-Dimension [m]"')
x-Dimension [m]")

'Mean Deviation [°C]")

Mean Deviation vs Thermocouple Position', ...

' (kg =1.60 x 10%4) '})

view (138,

daspect (

figure

surf (yi,
xlabel ('
ylabel ('
zlabel ('
title ({'

-27)
[1 1 2001])

xi, zIndexTop)

y-Dimension [m]"')

x-Dimension [m]")

Mean Deviation [°C]"')

Mean Deviation vs Thermocouple Position (Top Edge)',...

' (kg =1.60 x 1074) '})

view (138,

daspect (

figure

surf (yi,
xlabel ('
ylabel ('
zlabel ('
title ({'

-27)
[1 1 2007)

x1i,zIndexRight)

y-Dimension [m]"')

x-Dimension [m]"')

Mean Deviation [°C]")

Mean Deviation vs Thermocouple Position (Right Edge)', ...

' (kg =1.60 x 10%4) '})

view (138,

daspect (

-27)
[1 1 200])

% LOAD THIRD DATA SET ——— === — o oo oo o
% See data set 1 for detailed explanation of code

load ('"KG18000.mat")

[

m,n] =

size (zIndex) ;

= zIndex (end, end);
zIndex (end, 1) ;

zIndex (1,1);

(

(

(

= zIndex round(O 25*m) , round (0.5*n) ) ;
zIndex (end, round (0.5*n) ) ;
zIndex (1, end) ;

size(zavg) ;

l1:m

3 = 1l:n

if zavg(i,j) == 0
Zan(l j) = 10;
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end

end
end
i = l:xsquares;
j = l:ysquares;
xi = (Nx - (3*1 - 2))*(Lx/Nx);
yli = (Ny - (3*3 - 2))*(Ly/Ny);
[~,I] = min(zavg(:));
[I row, I col] = ind2sub(size(zavg),I);
write = 'Minimum for k g = 1.8e4 \n x = %$.6f [m] y = %$.6f [m] \n \n';
xdist = (I_row/Nx)*Lx;
ydist = (I_col/Ny)*Ly;

fprintf (write,xdist, ydist)

figure

surf (yi,xi, zIndex);

xlabel ('y-Dimension [m]")

ylabel ("x-Dimension [m]")

zlabel ('Mean Deviation [°C]")

title({'Mean Deviation vs Thermocouple Position',...
' (kg =1.80 x 10%4) '})

view (138, -27)

daspect ([1 1 2001)

figure

surf (yi, xi, zIndexTop)

xlabel ('y-Dimension [m]")

ylabel ('x-Dimension [m]")

zlabel ('Mean Deviation [°C]"'")

title({' Mean Deviation vs Thermocouple Position (Top Edge)', ...
' (kg =1.80 x 1074) '})

view (138,-27)

daspect ([1 1 20017)

figure

surf (yi,xi, zIndexRight)

xlabel ('y-Dimension [m]")

ylabel ('x-Dimension [m]")

zlabel ('Mean Deviation [°C]")

title({' Mean Deviation vs Thermocouple Position (Right Edge)', ...
" (kg =1.80 x 1074) '})

view (138,-27)

daspect ([1 1 20017)

% LOAD FOURTH DATA SET ——————— oo oo
% See data set 1 for detailed explanation of code

load ('KG20000.mat")

[

m,n] = size(zIndex);

MD(1,4) = zIndex(end,end);

MD(2,4) = zIndex(end,1l);

MD(3,4) = zIndex(1,1);

MD(4,4) = zIndex(round(0.25*m),round(0.5*n));
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MD(5,4) = zIndex(end,round(0.5%*n));

MD(6,4) = zIndex(1l,end);
i = l:xsquares;
J = l:ysquares;
x1 = (Nx - (3*1i - 2))*(Lx/Nx);
yi = (Ny - (3*j - 2))*(Ly/Ny);
[m,n] size(zavg) ;
for 1 = 1:m
for 3 = 1l:n
if zavg(i,j) == 0
zavg(i,j) = 10;
end
end
end
[~,I] = min(zavg(:));
[I row, I col] = ind2sub(size(zavg),I);
write = 'Minimum for k g = 2.0e4 \n x = %$.6f [m] y = %$.6f [m] \n \n';
xdist = (I_row/Nx)*Lx;
ydist = (I_col/Ny)*Ly;

fprintf (write,xdist, ydist)

figure

surf (yi, xi, zIndex) ;

xlabel ('y-Dimension [m]")

ylabel ('x-Dimension [m]")

zlabel ('Mean Deviation [°C]")

title({' Mean Deviation vs Thermocouple Position',...
' (kg =2.00 x 10%4) '})

view (138, -27)

daspect ([1 1 2001)

figure

surf (yi, xi, zIndexTop)

xlabel ('y-Dimension [m]")

ylabel ('x-Dimension [m]")

zlabel ('Mean Deviation [°C]")

title({' Mean Deviation vs Thermocouple Position (Top Edge)', ...
"' (k. g=2.00 x 10%4) '})

view (138,-27)

daspect ([1 1 2001)

figure

surf (yi,xi, zIndexRight)

xlabel ('y-Dimension [m]")

ylabel ('x-Dimension [m]")

zlabel ('Mean Deviation [°C]")

title({' Mean Deviation vs Thermocouple Position (Right Edge)', ...
" (k. g = 2.00 x 10%4) '})

view (138,-27)

daspect ([1 1 2007])

% LOAD FIFTH DATA SET == === —— = m o m o o e e



% See data set 1 for detailed explanation of code
load ('KG22000.mat")
[

m,n] = size(zIndex);
MD(1,5) = zIndex(end,end);
MD(2,5) = zIndex(end,1);
MD(3,5) = zIndex(1,1);
MD(4,5) = zIndex(round(O 25*m) , round (0.5*n) ) ;
MD(5,5) = zIndex(end,round(0.5%*n));
MD(6,5) = zIndex(1l,end);
[m,n] size(zavqg);
for 1 = 1:m

for 3 = 1:n

if zavg (i, j) == 0
zavg (i,j) = 10el0;
end

end
end
i = l:xsquares;
j = l:ysquares;
x1i = (Nx - (3*1 - 2))*(Lx/Nx);
yi = (Ny - (3*j - 2))*(Ly/Ny);
[~,I] = min(zavg(:));
[I row, I col] = ind2sub(size(zavg),I);
write = 'Minimum for k g = 2.2e4 \n x = %$.6f [m] y = %$.6f [m] \n \n'
xdist = (I_row/Nx)*Lx;
ydist = (I_col/Ny)*Ly;

fprintf (write,xdist,ydist)

figure

surf (yi, xi, zIndex) ;

xlabel ('y-Dimension [m]")

ylabel ('x-Dimension [m]")

zlabel ('Mean Deviation [°C]")

title({' Mean Deviation vs Thermocouple Position',...
' (kg =2.20 x 1074) '})

view (138,-27)

daspect ([1 1 20017)

figure

surf (yi,xi, zIndexTop)

xlabel ('y-Dimension [m]")

ylabel ('x-Dimension [m]")

zlabel ('Mean Deviation [°C]")

title({' Mean Deviation vs Thermocouple Position (Top Edge)', ...
' (kg =2.20 x 10"4) '})

view (138,-27)

daspect ([1 1 200])

figure
surf (yi,xi, zIndexRight)
xlabel ('y-Dimension [m]")
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ylabel ("x-Dimension [m]")

(
zlabel ('Mean Deviation [°C]")
title ({

' (k g = 2.20 x 1074) '})
daspect ([1 1 200])
view (138,-27)

xsquares = round( (Nx-x1d)/3);
ysquares = round ( (Ny-yld)/3);

for i = l:xsquares
for j = l:ysquares
xii = Nx - (3*1 - 2);
yii = Ny - (3*] - 2);
AvgRight (i,3) = avgright(xii,yii);
AvgTop (i,J) = avgtop(xii,yii);
SigRight(i,3j) = sigright(xii,yii);
SigTop(i,]j) = sigtop(xii,yii);
end
end
figure

surf (yi,xi, AvgRight)

xlabel ('y-Dimension [m]")
ylabel ('x-Dimension [m]")
zlabel ('Mean Deviation [°C]"'")

title({' Mean Temperature vs Thermocouple Position (Right Edge)', ...

' (kg = 2.20 x 1074) '})
daspect ([1 1 2007)
view (138,-27)

figure

surf (yi, xi, AvgTop)

xlabel ('y-Dimension [m]")
ylabel ('x-Dimension [m]")
zlabel ('Mean Deviation [°C]")

' Mean Deviation vs Thermocouple Position (Right Edge)', ...

title({' Mean Temperature vs Thermocouple Position (Top Edge)',...

' (kg =2.20 x 10"4) '})
daspect ([1 1 20017)
view (138,-27)

figure

surf (yi,xi, SigRight)

xlabel ('y-Dimension [m]")

ylabel ('x-Dimension [m]")

zlabel ('Mean Deviation [°C]")

title({' Standard Deviation vs Thermocouple Position
" (k. g =2.20 x 10%4) '})

daspect ([1 1 200])

view (138,-27)

figure
surf (yi,xi, SigTop)
xlabel ('y-Dimension [m]")

(Right Edge)', ...
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ylabel ("x-Dimension [m]")

zlabel ('Mean Deviation [°C]")

title({' Standard Devation vs Thermocouple Position (Top Edge)',...
' (kg =2.20 x 1074) '})

daspect ([1 1 200])

view (138,-27)

% FINAL PLOTTING —————————— - ——mmm o mmmm—mm o e e
% Consider each of the 6 points as a function of k g

figure
hold on
plot(g,MD (1
plot(g,MD (2
plot(g,MD (3
plot(g,MD (4, :
plot (g,MD (5
plot (g,MD (6

~
.

—_— — — — — —

—_— — — — — —

legend('Point 1','Point 2', 'Point 3','Point 4', 'Point 5', 'Point 6')
xlabel ('k g'")

ylabel ('Mean Deviation')

title('Mean Deviation for Various Points as a Function of k g')



